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Preface

This Tutorial will go through the basic principles of System identification and Estimation and
how to implement these techniques in LabVIEW and LabVIEW MathScript.

LabVIEW is a graphical programming language created by National Instruments, while
LabVIEW MathScript is an add-on to LabVIEW. LabVIEW MathScript has similar syntax as,
e.g., MATLAB. LabVIEW MathScript may be used as a separate part (and can be considered
as a miniature version of MATLAB) or be integrated into the graphical LabVIEW code using
the MathScript Node.

The following methods will be discussed:
State Estimation:

e Kalman Filter
e Observers

Parameter Estimation:
e Least Square Method (LS)
System ldentification

e Sub-space methods/Black-Box methods
e Polynomial Model Estimation: ARX/ARMAX model Estimation

Software
You need the following software in this Tutorial:

e LabVIEW
e LabVIEW Control Design and Simulation Module
e LabVIEW MathScript RT Module (LabVIEW MathScript)

“LabVIEW Control Design and Simulation Module” has functionality for creating Kalman
Filters and Observers, but it also has functionality for System identification.
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Part I: Introduction



1 Introduction to LabVIEW and
MathScript

In this Tutorial we will use LabVIEW and some of the add-on modules available for LabVIEW.

e LabVIEW
e LabVIEW MathScript RT Module
e LabVIEW Control Design and Simulation Module

1.1LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a
platform and development environment for a visual programming language from National
Instruments. The graphical language is named "G". LabVIEW is commonly used for data
acquisition, instrument control, and industrial automation. The code files have the extension
“.vi”, which is an abbreviation for “Virtual Instrument”. LabVIEW offers lots of additional
Add-ons and Toolkits.

[ NON | LabVIEW

Ed| abVIEW (

7 S

@ Create Project. | @ Open Existing.|

Recent Project Templates — All Recent Files - 4]

Blank VI SubVI_Integrator.vi

MPC vs PID Example - Simple Model.vi
MPC Air Heater Example.vi
SubVI_timeconstant_lowpass_filter.vi |
SubVI_Timedelay.vi

Step Response Example.vi

|

Air Heater Black Box Simulatorvi

». Find Drivers and Add-ons > Community and Support >+ Welcome to LabVIEW
Connect to devices and expand the B Participate in the discussion " Learn to use LabVIEW and upgrade
functionality of LabVIEW. forums or request technical from previous versions.

support.

:J LabVIEW News | Evolving Ul Technology Is More Than Just Skeuomorphic to Flat

For more information about LabVIEW, please goto my Blog:
and visit National Instruments at



6 Introduction to LabVIEW and MathScript

1.2LabVIEW MathScript

MathScript is a high-level, text- based programming language. MathScript includes more
than 800 built-in functions and the syntax is similar to MATLAB. You may also create custom-
made m-file like you do in MATLAB.

MathScript is an add-on module to LabVIEW but you don’t need to know LabVIEW
programming in order to use MathScript.

MathScript is an add-on module to LabVIEW but you don’t need to know LabVIEW
programming in order to use MathScript.

T LabW IS Mgt ot
e IR Yoo (posis Dok Srdos '
O wrdoes Pty e oty
Fet delp, mtet "Malp classer -~ o~ —
SIS IS Claremer »
Textual
Output
Variables /
- ariables
MathScript script/
Window B || B
History
Crmwnars! wuslins
Command 1
Window - -
For more information about MathScript, please read the Tutorial “ ”
How do you start using MathScript?
You need to install and the . When necessary

software is installed, start MathScript by open LabVIEW. In the Getting Started window,
select Tools -> MathScript Window...:

P Getting Started
File Operate BEEN Help

Measurement & Automation Explorer. ..
snin s Instrumentation >

l Real-Time Madule
W wlw w

MathScript Window. ..

DSC Module
New IMAQ VYision > Latest from ni.com

Tutorial: System Identification and Estimation in LabVIEW



7 Introduction to LabVIEW and MathScript

For more information about MathScript, please read the Tutorial “

MathScript Node:

You may also use MathScript Code directly inside and combined with you graphical LabVIEW
code, for this you use the “MathScript Node”. With the “MathScript Node” you can combine
graphical and textual code within LabVIEW. The figure below shows the “MathScript Node”
on the block diagram, represented by the blue rectangle. Using “MathScript Nodes”, you can
enter .m file script text directly or import it from a text file.

43 tir_fittor. vi Block Disgram
| e Edt Yew Promt Qperate Jook Wedow Heb

2 5 T e | e 3

L)

]
13]lgg

Fatopion

JUON

‘ il I fpts = [0 fstoplow fpassiow];
Fatonl amplitude = [00 1.0 10);
foxssion 1y —— b = fir2(taps, fpts, amplitude); El =
N5h-f; [H.F}=freqz(b, [1). 512, 1); 'l JAL
¢ I = $H =20 * log (abs(H)); . :';jg.;{g]
taos il

[fir2 designs a line; éﬁfo‘ﬂﬁ‘ﬁ Iter using frequency sampling|

MathScript
Node

You can define named inputs and outputs on the MathScript Node border to specify the data
to transfer between the graphical LabVIEW environment and the textual MathScript code.

You can associate .m file script variables with LabVIEW graphical programming, by wiring
Node inputs and outputs. Then you can transfer data between .m file scripts with your
graphical LabVIEW programming. The textual .m file scripts can now access features from
traditional LabVIEW graphical programming.

The MathScript Node is available from LabVIEW from the Functions Palette: Mathematics >
Scripts & Formulas

Tutorial: System Identification and Estimation in LabVIEW



8 Introduction to LabVIEW and MathScript

Scripts & Formulas

Formula Mode  Script Nodes

abe
" {(H)
Formula Formula Parsing
4 2
], il
1D & 2D Eval... Calculus

If you click Ctrl + H you get help about the MathScript Node:

Context Help

MathScript Node —

input varable
(optional)
input variable
(optional)
SITor in e

1 Sumd = eye(size(A));
2 fori=1in

2@  SumA = SumA + A%iffactonial();
4 end
5 Delta = SumA - expmx(@A);

output variable
(optional)

oc 2HTor out

Executes LabVIEW MathScripts and your other text-based scripts using the
MathScript RT Module engine. You can use the MathScript Node to evaluate
scripts that vou create in the LabYIEW MathScript Window,

If a MathScript Node contains a warning glyph, LabYIEW operates with slower
run-time performance for the node. You can madify your script to remove the
warning alyph from the MathScript Node and improve run-time performance.

Detailed help v

F&[2]< & .

Click “Detailed help” in order to get more information about the MathScript Node.

Tutorial: System Identification and Estimation in LabVIEW



2 LabVIEW Control and Simulation
Module

LabVIEW has several additional modules and Toolkits for Control and Simulation purposes,
e.g., “LabVIEW Control Design and Simulation Module”, “LabVIEW PID and Fuzzy Logic
Toolkit”, “LabVIEW System Identification Toolkit” and “LabVIEW Simulation Interface
Toolkit”. LabVIEW MathScript is also useful for Control Design and Simulation.

LabVIEW Control Design and Simulation Module
LabVIEW PID and Fuzzy Logic Toolkit

LabVIEW System ldentification Toolkit

LabVIEW Simulation Interface Toolkit

Below we see the Control Design & Simulation palette in LabVIEW:

o Wiew ¥

» 2
P ‘t’ 5
G(s) ﬁ
Control Design  System Identi...
2t g
Fuzzy

Fuzzy Logic Sim Interface

In this Tutorial we will focus on the Vs used for Parameter and State estimation and
especially the use of Observers and Kalman Filter for State estimation.

If you want to learn more about Simulation, Simulation Loop, block diagrams and PID
control, etc., | refer to the Tutorial “Control and Simulation in LabVIEW” This Tutorial is
available from

In this Tutorial, we will need the following sub palettes in the Control Design and Simulation
palette:

e Control Design
e System Identification
e Simulation

Below we see the Control Design palette:



10 LabVIEW Control and Simulation Module

Desig
4@ O\Sean:h o iew

e ¥ ra s )
= <> - =3
Model Constr... Model Inform... Model Conver... Model Interco...
A » Pl Emmg
< Kty C.;; =

Time Response  Frequency R... Dynamic Char... Model Reduct...
) - 5

@ o] =

State-Space ... State Feedba... Stochastic Sy

K thph

Analytical PID... Predictive Co... Implementation

Below we see the System Identification palette:

System Identification

> | > [ ¥
-0:-0 -o:-o
Pu = =S
Preprocessing Parametric Frequency Grey-Box Recursive
» > » wnp M
| S = - il b
e Ly =] LLHit G(S)
Monparametric Validation Analysis Conversion
("
Management Utilities

Below we see the Simulation palette:

o Wiew ™

[]

Control & Sim. ..
= == | »
g
Signal Genera... Signal Arithm...  Graph Utilities
» »
L)
Continuous Li... Monlinear Sys... Discrete Line...
===l 2= M »
ey @
(58] 3l =)
Utilities Trim & Linearize  Lookup Tables
= (K
=

Optimal Design Estimation

In the next chapters we will go in detail and describe the different sub palettes in these
palettes and explain the functions/Sub VIs we will need for System identification and
Estimation.

Tutorial: System Identification and Estimation in LabVIEW



3 Model Creation in LabVIEW

When you have found the mathematical model for your system, the first step is to define/ or
create your model in LabVIEW. Your model can be a Transfer function or a State-space

model.

In LabVIEW and the “LabVIEW Control Design and Simulation Module” you can create

different models, such as State-space models and transfer functions, etc.

In the Control Design palette, we have several sub palettes that deals with models, these

are:

e Model Construction

e Model Information

e Model Conversion

e Model Interconnection

Control Design

ey b

g

. Model Conver...

r

8]

Model Interco..

™ TR Eoics !
rll HT *\
t f CICOO
Time Response  Frequency R... Dynamic Char... Model Reduct...
» » 4
= o = ek
u=-kx oo E=IE =[]
State-Space ... State Feedba... Stochastic Sy... Solvers
2 »
% Tar
0. H
" E ChPh “'
Analytical PID... Predictive Co... Implementation

Below we go through the different subpalettes and the most used Vis in these palettes.

“Model Construction” Subpalette:

In this palette we have VIs for creating state-space models and transfer functions.

11




12 Model Creation in LabVIEW

Model Construction

o \liew ¥

- =+ -
- =
k2] i ="

CD Construct... CD Construct... €D Construct...

el

CD Construct... CD Construct...

CD Construct...

0 O 0 . =0 O

CD Draw Stat... CDDraw Tra... CDDraw Zer... CDRead Mod... CD Write Mod...

CD Construct...

- Use the Model Construction Vs to create linear system models and modify the properties
of a system model. You also can use the Model Construction Vs to save a system model to a
file, read a system model from a file, or obtain a visual representation of a model.

Some of the most used VIs would be:

T+

7.:-
e} CD Construct State-Space Model.vi

CD Construct Transfer Function Model.vi

These VIs and some others are explained below.

3.1State-space Models

Given the following State-space model:
x =Ax + Bu
y=Cx+Du

In LabVIEW we use the “CD Construct State-Space Model.vi” to create a State-space model:

CD Construct State-Space Model. vi

el

|Numeric v |

Tutorial: System Identification and Estimation in LabVIEW



13 Model Creation in LabVIEW

CD Construct State-Space Model.vi

Sampling Time (s) —
A >

State-Space Model

T —are
C f Tetel error out
D

errar in (no error)

Creates a deterministic state-space representation of a system using the matrices A, B, C, and
D, and the Sampling Time (s). You must manually select the polymorphic instance to use.

You may use numeric values in the matrices A,B,C and D or symbolic values by selecting
ether “Numeric” or “Symbolic”:

Numeric [Numeric ~/| Symbolic [Symbolic ]

: : Sampling Time (s) ————
Sampiing Time (sp}: — State-Space Model Symbolic A [ State Space Model
B — 2 Symbolic B w rale
g ,:] IEIS] error out Symbolic C g petele error out
Symbolic D E
. D error in (no error)
error in (no error) Variables s
Example: Create State-Space model
Block Diagram:
Btate-Space Model]
CD Construct State-Space Model. vi CD Draw State-Space Equation.vi|
—+ 0+
:':Tﬁlsl @
ClD & -AE
MNumeric ¥
Front Panel:
State-Space Model State-Space Equation
Model name Sampling Time
System Model 0 Idt = 10 01
I I dx/dt [0 ) x(t) + 0o u(t)
A B
i : ——
jr 0 1 0 0 j’r 0 0 1 yit) = [1 0] x{t) + [o o] uft)
s 0 1 0 ; ] o
7’0 1] 1] 0 r’U 0 0
C D
i f ————
j\- 0 1 0 0 jr 0 0 0
s 0 0 0 s [ 0
o o

Tutorial: System Identification and Estimation in LabVIEW



14 Model Creation in LabVIEW

The “CD Draw State-Space Equation.vi” can be used to see a graphical representation of the
State-space model.

Example: Create SISO/MIMO State-Space models

SISO Model (Single Input, Single Output):

Creating a SISO Model

State-Space Model

L -

£ o g A4
I

Btate-Space Model

CD Construct State-Space Model.vi

0

(mpmEmey (Mmoo

o o g T (N

y / Mote: Although the B, C and D are a column vector,
p] la row vector and a scalar respectively, the datatype
Sm 0 used must be a 2-D array.
=0 | 0 0

SIMO Model (Single Input, Multiple Output):

(Creating a SIMO Model Creating a SIMO Madel

State-Space Model

L -

ém 05 0,17 0 ém
ém o
0 o
(PR (YE

-Space Model

MISO Model (Multiple Input, Single Output):

Creating a MISO Model

Creating a MISO Model

State-Space Model

L B

a

i o Lo Jo0
e i =
fmST T I

-0,50 [-0,17
1,0 0,0

. . N o o
Ao | Ao =
=R E )

MIMO Model (Multiple Input, Multiple Output):

Tutorial: System Identification and Estimation in LabVIEW



15 Model Creation in LabVIEW

Creating a MIMO Model Creating a MIMO Model
State-Space Model H0 |Foso T017 [CD Construct State-Space Model.vi] Btate-Space Model
Model name Sampling Time M 1,0 0,0 ':’; """"""""""""""""""""""""
ISystem Model I 1] Ic 0.
a B Mumeric ¥
30_ 0,5 -0,17 0 o 1 4o JlLo_Joo
" 1 a ] B 0 1 = 0,0 1,0
:’r 0 0 0 0 j‘ 0 0 0
c D o Jfo0 s
go [ o 15 "o o o 1 G| e
3 1 1]
0

,.\
o
=]

3— 1] j—l 0
H0 oo 1,0

Ho | Io 0 0,0

[End of Example]

3.2Transfer functions

Given the following Transfer function:

numerator by + bys + bys? + -+

H(s) = =
(s) denominator ay,+ a;s+ a,s? + -

In LabVIEW we use the “CD Construct Transfer Function Model.vi” to create a Transfer
Function:

CD Construct Transfer Function Madel. vil

T+
£s
G(-)

|SISO hd I

CD Construct Transfer Function Model.vi

Sampling Time {s) — ]
Numerator s Transfer Function Model
Denominator "6l
Delay f o error out

error in (no error)

Creates a transfer function representation of a system using the Sampling Time (s),
Numerator, Denominator, and Delay. This VI also produces a transfer function model which
specifies the data in symbolic Form. You must manually select the polymorphic instance to use.

Example: Transfer Function

Block Diagram:

Tutorial: System Identification and Estimation in LabVIEW



16 Model Creation in LabVIEW

ransfer Function Model

=
ﬂ CD Draw Transfer Function Equation.vil

4

do_llj4f1

Front Panel:

Transfer Function Model

System Model 0

o —
Lol £ e e 2 serl

£t IS ———

Transfer Function Equation

[End of Example]

Example: Transfer Function with Symbolic values

Block Diagram:

ransfer Function Model
Sat

Symbolic Numerator

CD Construct Transfer Function Model.vi CD Draw Transfer Function Equation.vi|

SISO (Symbolic) ¥

SN | | 2 | o || o | o
1] 2T =T T lsT Ifle] |

Front Panel:

Tutorial: System Identification and Estimation in LabVIEW



17 Model Creation in LabVIEW

Transfer Function Maodel

System Model 0

Equation
o o 45"+ 5546
2
do Moo e s 4 o s oHastd

[End of Example]

3.2.1 commonly used transfer functions

4

For commonly used transfer functions we can use the “CD Construct Special TF Model.vi”:

1.order system:

The transfer function for a 1. order system is as follows:

e—TS

H(s) =

Ts +1

Where
K is the gain
T is the Time constant

T isthe Time delay

Select the polymorphic instance on the “CD Construct Special TF Model.vi”:

‘CD Construct Special TF Model. vi|
==u

Tutorial: System Identification and Estimation in LabVIEW



18 Model Creation in LabVIEW

C:\...al Model Creation.llb\Special Model Creation Sub¥I'\CD Create 1st Order Model.vi

Static Gain == Transfer Function Model
Time Constant {s) Y 1
error in {no error) ==t : error out
Delay

Creates commonly used transfer function models. You must manually select the polymorphic
instance to use,

2.order system:

The transfer function for a 2. order system is as follows:

Kwy? K
H(s) == > =
s%+ 20wys + wy (i

Wy

2 S
) +2 o1

Where

e K isthegain
e ( zetaisthe relative damping factor
e wy[rad/s]is the undamped resonance frequency.

Select the polymorphic instance on the “CD Construct Special TF Model.vi”:

CD Construct Special TF Madel. vi|

E=

G0

2nd Order ¥

C:\...al Model Creation.llb\Special Model Creation Sub¥I'\CD Create 2nd Order Model.vi

Static Gain — ] Transfer Function Model

Damping Ratio — | "’t,w

Matural Frequency (rad/s) —
error in {no error)

Delay

error out

Creates commonly used transfer function models. You must manually select the polymorphic
instance to use,

Time delay as a Pade’ approximation:

Time-delays are very common in control systems. The Transfer function of a time-delay is:

Tutorial: System Identification and Estimation in LabVIEW



19 Model Creation in LabVIEW

In some situations it is necessary to substitute e~™ with an approximation, e.g., the Padé-
approximation:

1—kys + kys® + -+ kys™
T 14 kys 4 kys2 4 o+ ks

e—TS

Select the polymorphic instance on the “CD Construct Special TF Model.vi”:

CD Construct Special TF Model.vi|
-+
Bl G[-)
t

Pade ¥ |

C:'...I Model Creation.lIb'\Special Model Creation Sub¥I'\CD Create Pade Delay Model.vi

Delay [ Model with Delay
Polynomial Order ! o B0
error in (no error) === error out

Creates commonly used transfer function models. You must manually select the polymorphic
instance to use,

“Model Information” Subpalette:

-+ 0 -0 -+ @
-.-: sTFs
CD Yerify MI... CD Verify Mo... CD Yerify if Di... CD Yerifyif D... CD Get Syste...
g 7 o ]
EE] 3 . e
CD Get Data ... CD SetDatat... CD Get Sampl... CD Set Sampli..
C=g 7 G ?D‘
WA At [ =]

CD Get Delay... CD Set Delay... CD Get Mame... CD Set MName...

- Use the Model Information VIs to obtain or set parameters, data, and names of a system
model. Model information includes properties such as the system delay, system dimensions,
sampling time, and names of inputs, outputs, and states.

“Model Conversion” Subpalette:

Tutorial: System Identification and Estimation in LabVIEW



Model Creation in LabVIEW

20
@ Q Search | oo View~
o == = = =
=S oh
Lege] b gy bE] F 3 e,
CD Convert k... CD Convertt.,.. CD Convertt... CD Convert D... CD ConvertD...
o o o o o
Y Y Y i wid
SN2 T Ty 2dbs -C{,:h -Ei,)
CD Convert C... CD Convert D... CD ConvertD... CD Convert C... CD ConvertS...

- Use the Model Conversion Vls to convert a system model from one representation to
another, from a continuous-time to a discrete-time model, or from a discrete-time to a
continuous-time model. You also can use the Model Conversion Vls to convert a control
design model into a simulation model or a simulation model into a control design model.

Some of the most used Vls in the “Model Conversion” subpalette are:

=+

g=3
Y8l cD convert to State-Space Model.vi

=T+

-+
bew| cp Convert to Transfer Function Model.vi

=+

....-)
5-~-2| CD Convert Continuous to Discrete.vi

These VIs and some others are explained below.

Convert to State-Space Models:

CD Convert ko State-Space Model.vil
-+

Tfegs)
|TF toSSs v I

CD Convert to State-Space Model.vi

Transfer Function Model O State-Space Model
Realization Type - l,{a{s]
clo error out

Tolerance rﬂ

error in (no error)

Converts a system model to state-space form. This VI produces a full or minimum realization
by specifying the Realization Type. The data type you wire to the Transfer Function
Model input determines the polymorphic instance to use.

Example: Convert from Transfer function to State-Space model

Block Diagram:

Tutorial: System Identification and Estimation in LabVIEW



21 Model Creation in LabVIEW

ransfer Function Mode! In| [75 Conwvert to State-Space Modelwi]  ptate-Space Model Out
h

Front Panel:

Transfer Function Model In

System Model {

State-Space Model Out

Syemtiodd | o

el e 2 B
ol B R [

S
C o £ onl e e

£ | T S

o L
H_EEEH_E

[End of Example]

Convert to Transfer Functions:

CD Convert ko Transfer Function Model. vi|

CD Convert to Transfer Function Model.vi

State-Space Model Transfer Function Model
Realization Type
Tolerance

error in {no error)

error out

Converts a system model to transfer function form. The data type you wire to the State-
Space Model input determines the polymorphic instance to use,

Example: Convert from State-Space model to Transfer Function

Block Diagram:

State-Space Model In|  [E5 Convert to Transfer Function Model.vi] [Transfer Function Model Qut|

G ==
Front Panel:

Tutorial: System Identification and Estimation in LabVIEW
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State-Space Model In

R -
0 0
éEI 0 i) 0 eﬂ 0 0
C N O C——
é 0 0 0 é 0 0
o o
[End of Example]

Convert Continuous to Discrete Model:

CD Convert Continuous to Discrete. vil

Transfer Function Model Out

T R .

T
C ol £ onl e e

£ o S

Matching Frequency (rad/s)

CD Convert Continuous to Discrete.vi

Continuous State-Space Model EI

Discrete State-Space Model

polymorphic instance to use,

Sampling Time {(s) -~ s"...:)z = Discrete IC Multiplier
Method error out
error in (no error)
Converts a continuous-time model to a discrete-time model using the Sampling Time
(s) and the Method vou specify. The Zero-Order-Hold conversion method supports

input and output delays that are not an integer multiple of the Sampling Time (s). The
data type you wire to the Continuous State-Space Model input determines the

Example: Convert from Continuous State-Space model to Discrete State-Space model

Block Diagram:

State-Space Model Continuous| [CD Convert Continuous to Discrete. vi]
[S=cl

Discrete State-Space Model

Y

Sampling Time (s
0,1

Front Panel:

S o
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Model Creation in LabVIEW

State-Space Model Continuous

System Model L I

1] 1 0
%El 0 0 0 ém g

C o R ™ I
0 0 0 0 0
o o

[End of Example]

“Model Interconnection” Subpalette:

Model Interconnection

m Q, search | 3

Discrete State-Space Model

Seentose | e

> B

CD Add Mode... CD Subtract ...

CD Horizontal... CD Yertical C...

==
=

CD Parallel.vi

.

CD Series.vi

CD Divide Mo...

-

CD Transpos...

.

CD Append.vi

CD Feedback.vi CD Unit Feed...

- Use the Model Interconnection Vls to perform different types of linear system
interconnections. You can build a large system model by connecting smaller system models

together.
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4 Introduction to System
ldentification and Estimation

This Tutorial will go through the basic principles of System identification and Estimation and
how to implement these techniques in LabVIEW.

The following methods will be discussed in the next chapters:
State Estimation:

e Kalman Filter
e Observers

System Identification:

e Parameter Estimation and the Least Square Method (LS)
e Sub-space methods/Black-Box methods
e Polynomial Model Estimation: ARX/ARMAX model Estimation

The next chapters will go through the basic theory and show how it could be implemented in
LabVIEW and MathScript.
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5 State Estimation with Kalman Filter

Kalman Filter is a commonly used method to estimate the values of state variables of a
dynamic system that is excited by stochastic (random) disturbances and stochastic (random)
measurement noise.

The Kalman Filter is a state estimator which produces an optimal estimate in the sense that
the mean value of the sum of the estimation errors gets a minimal value.

Below we see a sketch of how a Kalman Filter is working:

u

—P> System -

X

y

4

—p| Estimator :V\
X —— »

The estimator (model of the system) runs in parallel with the system (real system or model).
The measurement(s) is used to update the estimator.

LabVIEW Control Design and Simulation Module have lots of functionality for State
Estimation using Kalman Filters. The functionality will be explained in detail in the next
chapters.

Below we see the Discrete Kalman Filter implementation in LabVIEW:

Discrete Kalman Filter B! Discrete Kalman Filter Configuration 3]

Output y(K) S
Initiglize? s Estimated Output yhat{k) Configuration Dialog Box v
input u(k) Corrected State Estimate xh... Parameter Name EZER| (e
Predicted State Estimate xh = sechaticstaiesol N ——_——
— PERY | o N B Second-Order Statis A B
Efrorin {no error) —Kalman Fllte'j Gain M(k) & Initial State Estimate [1] an—l 0,1 0 au_l 1 0 go_
~=Kalman Predictor Gain L{k) Initial Estimation Ern ,}‘D— 0 0 0 0 ’j‘ﬂ_
error out 4 Initalize? False 3 S)“ J
C D
Filter Error Covariance P(k k) o I n Lo I 0 oo
Prediction Error Covariance... < > 17‘”_ 0 0 j‘u_ 0 0 ,jo_
P - A A Ay
Implements a discrete-time, linear time-variant, recursive Kalman filter. You define revien Peo T )
the system by specifying the stochastic state-space model and noise model as well o0
as the inputs and outputs to the system. The Discrete Kalman Filter function
calculates the predicted state estimates xhat(k+1|k), the corrected state
estimates xhat(k|k), the corresponding gains used to calculate these estimates,
and the associated estimation error covariances corresponding to these estimates.,
This function also calculates the estimated output yhat(k).
< >
ok [ cancel J[ hel

The Kalman Filter for nonlinear models is called the “Extended Kalman Filter”.
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27 State Estimation with Kalman Filter

5.1State-Space model

Given the continuous linear state space-model:
x = Ax + Bu
y=Cx+Du
Or given the discrete linear state space-model
Xp41 = Axy + Buy,
Vi = Cx, + Duy,
LabVIEW:

In LabVIEW we may use the “CD Construct State-Space Model.vi” to create a State-space
model:

CD Construct State-Space Model.vil

T+
B
tee]

|Numeric v |

CD Construct State-Space Model.vi

A = State-Space Model

-ﬁ E
35 error out

error in (no error)

Creates a deterministic state-space representation of a system using the matrices A, B, C, and
D, and the Sampling Time (s). You must manually select the polymorphic instance to use.

Note! If you specify a discrete State-space model you have to specify the Sampling Time.

LabVIEW Example: Create a State-space model

Block Diagram:

Matrix 4]
[oBL)

- 7 Btate-Space Model
Matrix B CD Construct State-Space Model.vil ‘
P L— =

[oBL]

J:-D'
Matrix ] —{ 12k
‘ [pBLY—— MNumeric v|
Matrix D|

[oBL)

The matrices A, B, C and D may be defined on the Front Panel like this:

Tutorial: System Identification and Estimation in LabVIEW



28 State Estimation with Kalman Filter

Matrix A Matrix B State-Space Model
a 0 0,20 0,50 a 0 1,00 0,00 Model name Sampling Time
A 0,00 -0,10 2 0,00 1,00 | System Model | 0
9o g

p=J
m

Matrix C Matrix D :—jﬂ -0,2 0,5 0 1 0
7 7 0 -0,1 0 1] 1
/, J
a 0 1,00 0,00 a 0 000 0,00 #D_ o 5 5 - -
i i
a g a g C D

e
W
=
o
o
A s Sl o
o5 §E
(=]
o

ol
o

[End of Example]
Discretization:

If you have a continuous model and want to convert it to the discrete model, you may use
the VI “CD Convert Continuous to Discrete.vi” in LabVIEW:

CD Convert Continuous to Discrete.vil
0+

R
S-2

55 ~¥

LabVIEW Functions Palette: Control Design & Simulation - Control Design - Model
Conversion - CD Convert Continuous to Discrete.vi

LabVIEW Example: Convert from Continuous to Discrete model

faatrix A
[pBLf—————
‘@—L (CD Construct State-Space Model.vi CD Convert Continuous to Discrete. vil iscrete State-Space Model]
M — :,i -u_; E’
PMatrix C “ Tetel Sampling Time (s) 52
‘ [oBLD) MNumeric ¥ S5 v
Matrix D
[oBLY

Note! We have to specify the Sampling Time.

[End of Example]

MathScript:

Use the ss function in MathScript to define your model (or tf if you have a transfer function).
Use the c_to_d function to convert a continuous model to a discrete model.

MathScript Example:

Tutorial: System Identification and Estimation in LabVIEW



29 State Estimation with Kalman Filter

Given the following State-space model:

. 0 1 X 0
[xl] - [—E —il [xl] +|1 [
Polm ™
A B
y=0_0[,]
C

The following MathScript Code creates this model:

Ne Ne N

L | | B e

If you want to find the discrete model use the c_to_d function:

Ts=0.1 % Sampling Time
discretemodel = c_to_d(ssmodel, Ts)

[End of Example]

5.20bservability

A necessary condition for the Kalman Filter to work correctly is that the system for which the
states are to be estimated, is observable. Therefore, you should check for Observability
before applying the Kalman Filter.

The Observability matrix is defined as:

C
0 ¢4

CA;I—l
Where n is the system order (number of states in the State-space model).

- A system of order n is observable if O is full rank, meaning the rank of O is equal to
n.

LabVIEW:

The LabVIEW Control Design and Simulation Module have a VI (Observability Matrix.vi) for
finding the Observability matrix and check if a states-pace model is Observable.

Tutorial: System Identification and Estimation in LabVIEW
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LabVIEW Functions Palette: Control Design & Simulation - Control Design - State-Space
Model Analysis - CD Observability Matrix.vi

CD Observability Matrix.vi
0+

(]

CD Observability Matrix.vi

State-Space Model =23 * Observability Matrix
Tolerance - [c‘f.\] -------------- . Is Observable?
error in (no error) ==F - ‘- Is Detectable?
error out

Calculates the Observability Matrix of the State-Space Model. You can use the observability matrix N to determine if the given system is observable. A
system of order n is observable if N is full rank, meaning the rank of N is equal to n. This VI also determines if the given system is detectable. A system is
detectable if all the unstable eigenvalues are observable.

Note! In LabVIEW N is used as a symbol for the Observability matrix.

LabVIEW Example: Check for Observability

CD Observability Matrix.vi]  [Observability Matrix|
O #BL] |
[C?’"] . [Is Observable?
-

[End of Example]

MathScript:

In MathScript you may use the obsvmx function to find the Observability matrix. You may
then use the rank function in order to find the rank of the Observability matrix.

MathScript Example:

The following MathScript Code check for Observability:

o\

Check for Observability:
= obsvmx (discretemodel)
rank (O)

5 O

[End of Example]

5.3Introduction to the State Estimator

Continuous Model:
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Given the continuous linear state space model:
X = Ax + Bu + Gw
y=Cx+Du+ Hv
or in general:
x=f(x,u)+Gw
y=g(x,u)+ Hv

Discrete Model:

Given the discrete linear state space model:
Xis1 = Ax, + Buy + Gwy,
Vi = Cx, + Duy + Hv,,
or in general:
Xiev1 = f (X U) + Gwy

Vi = 9(X, ug) + Hvy

Where v is uncorrelated white process noise with zero mean and covariance matrix Q and
w is uncorrelated white measurements noise with zero mean and covariance matrix, i.e.
such that

Q = E{ww"}

R = E{vv"}
E{w} is the expected value or mean of the process noise vector.
E{v} is the expected value or mean of the measurement noise vector.

Itis normaltolet Q and R be diagonal matrices:

g 0 0 0 re 0 0 0
o gn 0 of . o n 0o o
e=lo o -~ o|®=lo 0 -~ o
0 0 0 g 0 0 0 £,

G is the process noise gain matrix, and you normally set G equal to the Identity matrix I:
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1 0 0 O
101 0 0
G‘oo--.o
0 0 0 1

H is the measurement noise gain matrix, and you normally set H = 0

State Estimator:

The state estimator is given by:
Xiy1 = AX + Bup + K(y — 9)
Ve = Cxy
Where K is the Kalman Filter Gain
It can be found that:
K=XCTQ™1!

Where X is the solution to the Riccati equation. It is common to use the steady state
solution of the Riccati equation (Algebraic Riccati Equation), i.e., X = 0.

Note! Q and R is used as tuning/weighting matrices when designing the Kalman Filter
Gain K.

Below we see a Block Diagram of a (discrete) Kalman Filter/State Estimator:

\ w

y_est

Tutorial: System Identification and Estimation in LabVIEW



33 State Estimation with Kalman Filter

LabVIEW:

In LabVIEW Design and Simulation Module we use the “CD Kalman Gain.vi” in order to find
K:

LabVIEW Functions Palette: Control Design & Simulation - Control Design - State Feedback
Design = CD Kalman Gain.vi

CD Kalman Gain.vi|

=+
lof 1}

Kalman

Kalman Gain ¥

CD Kalman Gain.vi

Closed-Loop Eigenvalues
- Steady-State Kalman Gain (L)

Stochastic State-Space Model =
Second-Order Statistics Noi... f IN =] L Steady-State Estimation Err...
error in (no error) Ealmar, “‘“E“ ‘= Steady-State Innovation Gai. ..
==Steady-State Error Covarian...

error out

Calculates the optimal steady-state Kalman gain L that minimizes the covariance of the estimation error for a continuous or discrete model affected by
noise. You can use this VI to calculate the Kalman gain for a stochastic or deterministic model. You also can use this VI to discretize automatically a
continuous stochastic or continuous deterministic model before calculating L. You must manually select the polymorphic instance you want to use,

Note! In LabVIEW L is used as a symbol for the Kalman Filter Gain matrix.

Note! The “Kalman Filter Gain.vi” is polymorphic, depending on what kind of model
(deterministic/stochastic or continuous/discrete) you wire to this VI, the inputs changes
automatically or you may use the polymorphic selector below the VI:

CD Kalman Gain.vi

=+
lof T
Kalman

J Automatic |

Kalman Gain » Stochastic Model

Discretized Kalman Gain  p Deterministic Model

Deterministic and Continuous: Stochastic and Continuous:

Closed-Loop Eigenvalues

G-
State-Space Model , ~~~~~~~~~~ . »Steady—State Kalrpan 4Ga|n (L) Stochastic State-Space Model ==—f—=5r7] - Steady-State Kalman Gain
Q- | P! Folmon g —Steady-State Estlmatlpn E"'," Second-Order Statistics Noi... =/ = Esteady-state Estimation E
R=f §|| "~ Steady-State Innovation Gai... error in (no error) s Kalman jecey | [ Ste ady-State Innovation 1
M= i § = Steady-State Error Covarian... § -Steady-State Error Covar
error in {no error) s oo error out freees error out

Closed-Loop Eigenvalues

Stochastic and Discrete:

Deterministic and Discrete:

G- r Closed-Loop Eigenvalues
Continuous State-Space Model = E=2 Steady-State Kalman Gair  continuous Stochastic State... =

Closed-Loop Eigenvalues

“Steady—state Estimation f Continuous Second-Order Sta... =*

Q=T
R = e | L Steady-State Innovation error in (no errar) == “Steady-State Innovation Gai...
E i i -Steady-State Error Covar Sampling Time (s) : § = "Steady-State Error Covarian...
i B error out
errorin (no error) seeeed 11 fooooos error out

Sampling Time (s)

= Steady-State Kalman Gain (L)
1 -Steady-State Estimation Err...
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LabVIEW Example: Find the Kalman Gain

Block Diagram:
[CD Observability Matrix.vi
0 $0BL]
o3 1 [
(4]
fatrix A& ﬁﬂﬂﬂﬁ
[oBLM
[CD Convert Continuous to Discréte. vi CD Kalman Gain. vi E
= ;3 7 = o ¥0BL]
s [oBLDY = M h }
[ 52 ’ Kslman
S5 v ool Kalman Gain '
Front Panel:
Matrix & Matrix B T 4 Observability Matrix Is Observable?
# A ' & 0 1 0
o -020 0,50 ﬁ 0 1,00 0,00 f.j o0 1,00 0,00 P 0,98 0,05 J
A~ 0,00 -0,10 3 0,00 1,00 ;- 0,00 1,00 3} 0
T :'_) T 1]
Matrix C Matrix D
i 24
o 1,00 0,00 ﬁ 0 000 0,00
24 24
o ﬁ 0
Q R
) 74
f—j 0 0,00 0,00 rj o 001
_ 0,00 0,01 K
5 :

[End of Example]

MathScript:

Use the functions kalman, kalman_d or Iqe to find the Kalman gain matrix.

Function

Description

Example

kalman

Calculates the optimal steady-state Kalman
gain K that minimizes the covariance of the
state estimation error. You can use this
function to calculate K for continuous and
discrete system models.

>>[SysKal,

K]=kalman (ssmodel,

Q, R)

Tutorial: System Identification and Estimation in LabVIEW



35 State Estimation with Kalman Filter

[SysKalDisc, K]zkalman_d(ssmodel, Q,
R, Ts)

kalman_d | Calculates the optimal steady-state Kalman
gain K that minimizes the covariance of the
state estimation error. The input system and
noise covariance are based on a continuous
system. All outputs are based on a
discretized system, which is based on the
sample rate Ts.

Iqe Calculates the optimal steady-state fotae (A6, Cr0/R)

estimator gain matrix K for a continuous
state-space model defined by matrices A
and C.

MathScript Example: Find Kalman Gain using the Kalman function

MathScript Code for finding the steady state Kalman Gain:

% Define the State-space model:
c=1;

m=1;

k=1;

A= [0 1; -k/m -c/m];

B = [0; 1/m];

C = [[1 Ol¢

ssmodel = ss(A, B, C);

% Discrete model:

Ts=0.1l; % Sampling Time
discretemodel = ¢ to d(ssmodel, Ts);
Check for Observability:

O = obsvmx (discretemodel) ;

r = rank (0) ;

% Find Kalman Gain

=[0.01 0; 0 0.01];

=[0.01];

SysKal, K]=kalman (discretemodel, Q, R);

o\

The Output is:

K =
0.64435
0.10759

[End of Example]

MathScript Example: Find Kalman Gain using the Kalman function
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MathScript Code for finding the steady state Kalman Gain:

% Define the State-space model:
c=1;

m=1;

k=1;

A= [0 1; -k/m -c/m];

B = [0; 1/m];

G=[1 0 ; 0 11;

C = [[1 Ol¢

0.01 0; 0 0.0171;

% Find Kalman Gain
[
[0.01];

K=1lge (A,G,C,Q,R)

The Output is:

K =
0.86121
-0.12916

[End of Example]

5.4State Estimation

LabVIEW Control Design and Simulation Module have built-in functionality for State
Estimation using the Kalman Filter.

In the next section we will create our own Kalman Filter State Estimation algorithm.
LabVIEW:
There are different functions and VIs for finding the State Estimation using the Kalman Filter.

CD State Estimator.vi:

LabVIEW Functions Palette: Control Design & Simulation - Control Design - State Feedback
Design - CD State Estimator.vi

CD State Estimator.vi
0+

E&
|Single Qutput ¥
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CD State Estimator.vi

Configuration
Estimator Gain (L)
State-Space Model —— Estimator Model

Measured Qutputs _I_J 'Eaj:
Known Inputs mg’“" Xloooooooos grror out
error in {no error)

Builds the state estimator based on a list of known inputs, measured outputs, the linear state-space model, and the estimator
qain. The data type you wire to the Estimator Gain (L) input determines the polymorphic instance to use.

Below we show an example of how to use the CD State Estimator.vi in LabVIEW.

LabVIEW Example: State Estimator Simulation

=007 SB[l

y=11_ol[;]+ 0w

We will use the “CD State Estimator.vi” in LabVIEW.

Block Diagram becomes as follows:

stimator Modell
Discrete State-Space Model APEat ]
- i [ System Ipduded |
t Continuous to Discrete. vi [CD State Estimator. vi CD Initial Response.vi] Fiate Trajectory Graph
i P - = ==x3 =
Ea ~ i)
v g =2 [
[s-] 08 Multiple Output ] S5 v
Top ) ———————— [

ootk Rl (CD Kalman Gain.vi ] [initial Conditions

b o] o]l

EEIEIS]

[CD Observability Matrix.vi] ~ [Observabiity Matrix
== #0B1]
[Cl.:A] [s Observable?

L P TE

H

Note! We have used “CD Initial Response.vi” for plotting the response. The Vl is located in
the LabVIEW Functions Palette: Control Design & Simulation - Control Design - Time
Response = CD Initial Response.vi

The result becomes as follows:
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2,25 x1_est [T
> _l;ff":" x2_est [j
\ x1_sys |j

1,75 s
) e _Lz_sys [j

1,5 f\ \\
§ 1,25 \\ \ \
E’ l S M
< \ \\
750m m— iSSE
500m \\‘“ﬁ.‘
‘-\-.““‘
H“-“-
250m
_‘.-‘ﬂ—‘-_%\_
0= 1 1 1 1 1 1 1 1 1 1
1] 2 4 6 8 10 12 14 16 18 20
Time (s)

We see the estimates are good.

MathScript:

In MathScript we may use the built-in estimator function.

5.5LabVIEW Kalman Filter Implementations

LabVIEW Design and Simulation Module have several built-in versions of the Kalman Filter;
here we will investigate some of them.

The Control Design = Implementation palette in LabVIEW:

s O:Se'arch — Implementation

o Niew ¥

|4,
g

CD Discrete T...

e M F
= -
&
Model Cons'tr.. . ModeIr:IT:m‘ o o v Eon
Y I8 Is]
i ) ) B
Time Response  Freguency R...

CD Discrete Z...

. CD State Fee...

—vowrs

O OO0

g
Y

CD Discrete ...

State-Space ... State Feedba...

@
w

3

)
o [2
& &

Analytical PID... Predictive Co...

&

CD Discrete S... CD Discrete K...

Here we have the “CD Discrete Kalman Filter”.

Simulation = Estimation palette in LabVIEW:
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Simulation

o g ¥

&

Bt
BE

. Signal Arithm...  Graph Utilities

E

> ) »

[
E

Monlinear Sys...

Sl

% [3° i§=

& 5»&

Estimation

& View ¥

(BT -5Qar
-] (=]
ontinuous O... Discrete Obs...
-0 -0 \

[d

Continuous K... Discrete Kalm...

Continuous E...

Discrete Exte...

=W

Discrete Stoc...

Continuous ...

Discrete Nonli...

Here we have implementations for:

e Continuous Kalman Filter

e Continuous Extended Kalman Filter

e Discrete Kalman Filter

e Discrete Extended Kalman Filter

We will go through the “Discrete Kalman Filter” in detail and show some examples.

Discrete Kalman Filter:

LabVIEW Functions Palette: Control Design & Simulation = Simulation = Estimation -
Discrete Kalman Filter

#

Discrete Kalman Filter|
o0

Output y(k)
Initialize?
input u(k)

Discrete Kalman Filter

Estimated Output yhat({k)

Predicted State Estimate xh...
Kalman Filter Gain M(k)
Kalman Predictor Gain L{k)
Filter Error Covariance P{k | k)
Prediction Error Covariance...

Corrected State Estimate xh...

Implements a discrete-time, linear time-variant, recursive Kalman filter, You define the system by specifying the stochastic state-space model and noise model as well as the inputs and
outputs to the system, The Discrete Kalman Filter function calculates the predicted state estimates xhat(k+1|k), the corrected state estimates xhat(k|k), the corresponding gains used to
calculate these estimates, and the associated estimation error covariances corresponding to these estimates. This function also calculates the estimated output yhat(k).

By default you need to wire the input (©) and output (y) vectors:

Tutorial: System Identification and Estimation in LabVIEW




40 State Estimation with Kalman Filter

Putput (k)]

[oBL)

@ Discrete Kalman Filker

[oBL)

In order to Configure the block you right-click on it and select “Configuration...”

ngl:Lete Kalman Filter

|'l§rn Visible Items >

Help

Description and Tip...
Breakpoint 2
Estimation Palette >
Replace >

Reverse Terminals

Ican

Configuration...

Properties

In the Configuration window you can enter your model parameters:
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P Discrete Kalman Filter Configuration

Polymorphic instance Parameter Information
Pred gain, wf check v | Parameter source
Parameters Configuration Dialog Box v
Parameter Name Yalue ~  Configuration Dialog Box
8 Stochastic State-Spe Terminal
B Second-Order Statis A B
s . ra
B Initial State Estimate [1] jf 0 0,1 0 a 0 1 1] 0
B Initial Estimation Ern an— | 0 0 ao— | 0 a '
4 Initialize? False \f Ay \f
C D
LA I8 2
v j‘. 0 1 0 j‘. 0 0 0 o
( ‘ ) e J 0 K2 J 0 0 ra
. - r’o r’o y A
Preview
Sampling Time (s)
11,00
< | >
[ OK ] [ Cancel ][ Help ]

If you select “Terminal” in the “Parameter source” you may create your model in LabVIEW

code like this:

|

Discrete Kalman Filter

Given the following linear state-space model of a water tank:

E]=6 "I+
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N——

y= o]+t
C D

Where x; isthe level in the tank, while x, is the outflow of the tank. Only the level x; is
measured.

Step 1: First we create the model:

Discrete Model ?tochastic State-Space Model
:Matrix A boar] Eu:u Poat]
[oBLM
Fatrix B CD Construct State-Space Model.vil CD Convert Continuous to Discrete.vi] CD Convert Deterministic ta Stochastic Model. vi
[oBLM :D. -D.; i ":-"C-:‘
Patrix C Ig 5] S5 FEN
[oBLY [Mumeric ~]) S5 v
Matrix D
[oBLM

| [oBLM

Where A, B, D and D is defined according to the state-space model above:

Matrix & Matrix B Matrix G
74 ) 74
f) o0 0,00 -10,00 f;) 0 0,02 ;) o0 1,00 0,00
b 0,00 0,00 2 0,00 b 0,00 1,00
,—) 0 ;)) 0 ,—) 0

Matrix C Matrix D
’4) 0 1,00 0,00 'A) 0 0,00

T T
P i
9o e

Note! The Discrete Kalman Filter function in LabVIEW requires a stochastic state-space
model, so we have to create a stochastic state-space model or convert our state-space
model into a stochastic state-space model as done in the LabVIEW code above.

Step 2: Then we use the Discrete Kalman Filter function in LabVIEW on our model:
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E' Tank E>] L

»
Build Arra
[

Build Arra

Discrete Kalman'ilter ]

|[Stochastic State-Space Madel |}

alman Gain K

POB

CD Construct Noise Model. vi]
a T+
e
maRN
[ red

R] Numeric ¥

The Discrete Kalman Filter function also requires a Noise model, so we create a noise model
fromour Q and R matrices as done in the LabVIEW code above.

The results are as follows:

x2=F_out [ | 0,020
x2_est “ 0,0020
xl=y 3,76 0,01

3,76

x1_est

0,008 -

5_
4- = 0,006
g
?3_ = 0,004 -

0,002 -

B O O O | (8 O OO OO OO OO O UL OO O
0 10 20 30 40 S0 60 70 80 90 100 0 10 20 30 40 S0 60 70 8O 90 100
Simulation Time [s] Simulation Time [s]

We see the result is very good.

[End of Example]
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6 Create your own Kalman Filter
from Scratch

In this chapter we will create our own Kalman Filter Algorithm from scratch.

6.1The Kalman Filter Algorithm

LabVIEW Design and Simulation Module have several built-in versions of the Kalman Filter,
but in this chapter we will create our own Kalman Filter algorithm.

Here is a step by step Kalman Filter algorithm which can be directly implemented in a
programming language, such as LabVIEW. You may, e.g., implement it in standard LabVIEW
code or a Formula Node in LabVIEW.

Pre Step: Find the steady state Kalman Gain K

K is time-varying, but you normally implement the steady state version of Kalman Gain K.
Use the “CD Kalman Gain.vi” in LabVIEW or one of the functions kalman, kalman_d or Iqe in
MathScript.

Init Step: Set the initial Apriori (Predicted) state estimate
Xo = Xo

Step 1: Find Measurement model update

Vie = 9 (X, Ug)
For Linear State-space model:

Vi = Cx;, + Duy,
Step 2: Find the Estimator Error

ex = Yk — Yk

Step 3: Find the Aposteriori (Corrected) state estimate

X =X, + Key,

Where K is the Kalman Filter Gain. Use the steady state Kalman Gain or calculate the time-
varying Kalman Gain.

Step 4: Find the Apriori (Predicted) state estimate update

Xps1 = f Xk, ug)
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For Linear State-space model:
x_k_l_l = A)’C\k + Buk

Step 1-4 goes inside a loop in your program.

This is the algorithm we will implement in the example below.

6.2Examples

LabVIEW Example: Kalman Filter algorithm

Given the following linear state-space model of a water tank:
X1] _ [0 —107[*1 0.02
=l IRl L5

A B
X
y=[1_ol[,]+[0]u
Cc D

Where x; isthe level in the tank, while x, is the outflow of the tank. Only the level x; is
measured.

First we have to find the steady state Kalman Filter Gain and check for Observability:

Matrix &
[pBL) )
Matrix B] CD Construct State-Space Model.vi]  [CD Convert Continuous to Discrete.vi Piscrete Model|
DB ————————— :.:D' -D_;
:Matrix C ‘ 1 I?IE] SN2
[oBL; MNumeric ¥ 55 v Matrix G
Matrix D [oBI o
foosH CD Kalman Gain. vi
[oBLY = fpe1]
4
= ping R Kalman
%T, ‘ Kalman Gain ¥
CD Observabiity Matrix.vi]  [Qbservability Matrix]
e fps1]
[C?A] . [Is Observable?
LI

Then we run the real process (or simulated model) in parallel with the Kalman Filter in order
to find estimates for x; and x:
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KChart_x1

Discrete Mode| |[pessmeemsommconc

[Kalman Filter Algorithm. vi

)
f K

Initial value

0_lllo

In this case we have used a Simulation Loop, but a While Loop will do the same.
Blocks/SubViIs:

Real process/Simulated process:

Tank

-

H Here we either have a model of the system or read/write data from the real process
using a DAQ card, e.g., USB-6008 from National Instruments.

Implementation of the Kalman Filter Algorithm:

Kalman Filter Algorithm.vi

KF

Discrete State-Space Model - x_aposteriori_k
Y . - x_apriori_k+1
i
X _init -
Kalman Gain K

The Block Diagram is as follows:
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alman Gain K

»

1. yk — C’?k ‘I‘Duk

2. € = Yi — Vk

El
=

e ] A —
3. X =X+ Key
>

»

x_aprioti] [ apriori_k+1

»

|

4, '\?}H—l = A,fk + BUR

This is a general implementation and will work for all linear discrete systems.

The results are as follows:

x1=y o | 492
x1_est QN | 4,92

0 10 20 30 40 S0 60 70 380 90 100
Simulation Time [s]
x2 =F_out - 0,0020

x2_est B | 00019

0,01 -

0,008 -

0,006 -

[m3/s]

0,004 -

0,002 -
A

0-|||||||||||||||||||||||||||||||||||||||||||||||||||

0 10 20 30 40 S0 60 70 80O 90 100
Simulation Time [s]
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[End of Example]

Tutorial: System Identification and Estimation in LabVIEW



7 Overview of Kalman Filter Vls

In LabVIEW there are several VIs and functions used for Kalman Filter implementations.

7.1Control Design Palette

In the “Control Design” palette we find subpalettes for “State Feedback Design” and
“Implementation”:

Control Design

o \liew

_:]:_ ’ ’ ’ nné' '
| &’ —— |
Model Constr... Model Inform... Model Conver... Model Interco...
lv‘“”, ks €% ¥
¥ LAt C.tzz ==
Time Response . Dynamic Char...

4

o

State-Space ...

e, b
NP.”
Analytical PID. .. Predictive Co...

7.1.1 State Feedback Design subpalette

In the “State Feedback Design” subpalette we find VIs for calculation the Kalman Gain, etc.

State Feedback Design

@ Search | oo View™
Q

O+ =0 =L =L
- 4KF K}
N@I N@I hL’QR glm:m
CD Ackerman... CD Pole Place... CD Linear Qu..N\_CD Kalman G...
=+ = E=
=N o o]
2.4 u=k.x

CD State Esti... CD State-Spa... CD Augment ...

- Use the State Feedback Design VIs to calculate controller and observer gains for closed-
loop state feedback control or to estimate a state-space model. You also can use State
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Feedback Design Vls to configure and test state-space controllers and state estimators in
time domains.

Kalman Filter Gain VI:

CD Kalman Gain. vi
0+
hof LT+
Kalman

Kalman Gain ¥

CD Kalman Gain.vi

Closed-Loop Eigenvalues
Stochastic State-Space Model

= Steady-State Kalman Gain (L)
Second-Order Statistics Noi... f |N =lt’ Steady-State Estimation Err...
error in (no error) Ealmar, “‘“E Steady-State Innovation Gai...
Steady-State Error Covarian...

error out

Calculates the optimal steady-state Kalman gain L that minimizes the covariance of the estimation error for a continuous or discrete model affected by
noise. You can use this VI to calculate the Kalman gain for a stochastic or deterministic model. You also can use this VI to discretize automatically a
continuous stochastic or continuous deterministic model before calculating L. You must manually select the polymorphic instance you want to use,

7.1.2 Implementation subpalette

In the “Implementation” subpalette we find Vs for implementing a discrete Observer and a
discrete Kalman Filter.

1T Search | oo View ™
Q

HoBP EonT Bm p B-c»

CD Discrete T... CD Discrete Z... CD Discrete 5... CD State Fee...

o moa
2leti @

CD Discrete 5... €D Discrete ...

- Use the Implementation Vis and functions to simulate the dynamic response of a discrete
system model, deploy a discrete model to a real-time target, implement a discrete Kalman
filter, and implement current and predictive observers.

Discrete Kalman Filter:

Discrete Kalman Filker
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Output y(k)
Initialize?

input u{k)

error in (No error’) eeocococod @

Implements a discrete-time, linear time-variant, recursive Kalman filter. You define the system by specifying the stochastic state-
space model and noise model as well as the inputs and outputs to the system. The Discrete Kalman Filter function calculates the
predicted state estimates xhat(k+1|k), the corrected state estimates xhat{k|k), the corresponding gains used to calculate these
estimates, and the associated estimation error covariances corresponding to these estimates. This function also calculates the
estimated output vhat(k).

Discrete Kalman Filter

%

Estimated Output yhat{k)

Corrected State Estimate xh...
Predicted State Estimate xh...
Kalman Filter Gain M(k)

Kalman Predictor Gain L{k)

error out

———=Filter Error Covariance P{k| k)

Prediction Error Covariance...

7.2Simulation Palette

In the “Simulation” palette we find the “Estimation” subpalette:

Simulation

o view ™

(1]

Optimal Design

. Sign

v

Eit

Aril

[

559 »

i... Monlinear Sys...

S

o

5
E

L

[=4

Gra|

h=l

=r
[
=4

es

R

Disc

,
ful
v

e

Lookup Tables

te Line...

7.2.1 Estimation subpalette

In the “Estimation” palette we find VIs for implementing a continuous/discrete Kalman
Filter.
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Estimation

o \liew

Continuous O... Discrete Obs...

Continuous K... Discrete Kalm... Continuous E... Discrete Exte...
oom (T FEQ0H

B B

Discrete Stoc... Continuous M... Discrete Monli...

¢
£l

oz,
om
G

- Use the Estimation functions to estimate the states of a state-space system. The state-
space system can be deterministic or stochastic, continuous or discrete, linear or nonlinear,
and completely or partially observable.

Continuous Kalman Filter Vils:

CD Continuous Recursive Kalman Filker . vi

Continuous Kalman Filter
[CD Continuous Recursive Kalman Filter.vi]

Second-Order Statistics Moi...
Initial State Estimate xhat...
Initial Estimation Error Co...

Output y(t)
Input u(t) B0 Estimated Output vhat(t)
Stachastic State-Space Model @ :L_,L Estimated State xhat(t)
Estimation Error Covariance...

Kalman Filter Gain L(t)

Implements a Kalman Ffilter for a continuous linear time-invariant (LTI) or linear time-variant (LTV) stochastic
state-space model. This function calculates the Kalman filtered state estimates and outputs at time t,

NILYSim Continuous Extended Kalman Filker . vi

m
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Continuous Extended Kalman Filter
[NIL¥Sim Continuous Extended Kalman Filter.vi]

Output y(t)
Initialize? Estimated Output yvhat{t)
Input u(t) Estimated State xhat(t)
Plant Model m = “Kalman Filter Gain L{t)
Moise Model . Estimation Error Covariance...

Initial State Estimate xhat(0)
Initial Estimation Error Co...

data e

Jacobians

Calculates the estimated states and estimated outputs of a continuous nonlinear stochastic state-space system. This function
also calculates the Kalman gain and associated estimation error covariance matrix for the model.

Discrete Kalman Filter Vis:

Discrete Kalman Filter|
1]

Discrete Kalman Filter

Output y{k)
T —

input u(k)

Estimated Output yhat{k)
Corrected State Estimate xh...

L Predicted State Estimate xh...
Kalman Filter Gain M(k)

L' Kalman Predictor Gain L(k)
Filter Error Covariance P{k | k)

Prediction Error Covariance...

Implements a discrete-time, linear time-variant, recursive Kalman filter, You define the system by specifying the stochastic state-space model and noise model as well as the inputs and
outputs to the system. The Discrete Kalman Filter function calculates the predicted state estimates xhatik+1|k), the corrected state estimates xhat(k|k), the corresponding gains used to
calculate these estimates, and the associated estimation error covariances corresponding to these estimates. This function also calculates the estimated output yhat(k).

Discrete Extended Kalman Filter |

Discrete Extended Kalman Filter

Output y(k)
Initialize? y Estimated Output yhat{k)
input u(k) ‘ﬂ? Corrected State Estimate xh...
Plant Model - Lo L Predicted State Estimate xh...
mJ—‘ Kalman Filter Gain M(k)
data Prediction Error Covariance...

Jacobian Order

Calculates the estimated states, predicted states, and estimated outputs of a discrete nonlinear stochastic state-space
system. This function also calculates the Kalman gain and prediction error covariance matrix.
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8 State Estimation with Observers in
LabVIEW

Observers are an alternative to the Kalman Filter. An Observer is an algorithm for estimating
the state variables in a system based on a model of the system. Observers have the same
structure as a Kalman Filter.

In Observers you specify how fast and stable you want the estimates to converge to the real
values, i.e., you specify the eigenvalues of the system. Based on the eigenvalues you will find
the Observer gain K that is used to update the estimates.

One simple way to find the eigenvalues is to use the Butterworth eigenvalues from the
Butterworth polynomial. When we have found the eigenvalues we can then use the
Ackerman in order to find the Observer gain.

u

—P> System -

X

y

4

—p| Estimator :V\
X —— »

LabVIEW Control Design and Simulation Module have lots of functionality for State
Estimation using Observers. The functionality will be explained in detail in the next chapters.

8.1State-Space model

Given the continuous linear state space-model:
x = Ax + Bu
y=Cx+Du
Or given the discrete linear state space-model
Xk41 = Axy + Buy,

3’k = ka + Duk
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55 State Estimation with Observers in LabVIEW

LabVIEW:

In LabVIEW we may use the “CD Construct State-Space Model.vi” to create a State-space
model:

CD Construct State-Space Model.vil

el

|Numeric v |

CD Construct State-Space Model.vi

A = State-Space Model

error out

error in {no error)

Creates a deterministic state-space representation of a system using the matrices A, B, C, and
D, and the Sampling Time (s). You must manually select the polymorphic instance to use.

Note! If you specify a discrete State-space model you have to specify the Sampling Time.

LabVIEW Example: Create a State-space model

Block Diagram:

:Matrix A|
[oBL)

Faatri 7 [Btate-Space Model

Matrix B] CD Construct State-Space Model. vi| ftate-Space Modell
[DBL =

Matrix ] —{ 18l

‘ [oBLp———" Mumeric v|
Matrix D|

[pBL Y e——

The matrices A, B, C and D may be defined on the Front Panel like this:

Matrix & Matrix B State-Space Model
9 0 -0,20 0,50 a 0 1,00 0,00 Model name Sampling Time
y 000 -010 B 0,00 1,00 |System Model | o
J z
' A B
I3 ¥
Matrix C Matrix D jr 0o 1 02 05 0 ao 1 0
B J 0 -0,1 0 0 1
N 4 )
a 0 1,00 0,00 a 0] 0,00 0,00 ao— . . - go— - -
R Fa
a g a g C D
I I8
v O T - o —
” A

[End of Example]
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8.2Eigenvalues

One simple way to find the eigenvalues is to use the Butterworth eigenvalues from the
Butterworth polynomial.

Butterwort Polynomial:

The Butterworth Polynomial is defined as:
B,(s) = a,s"+ .. +as® +a;s+1
where ay = 1,a4,ay, ...,a, are the coefficients in the Butterworth Polynomial.
Here we will use a 2.order Butterworth Polynomial, which is defined as:
B,(s) =ays?*+a;s+1
where a, = 1,a, = V2T, a, = T?.

This gives:

B,(s) = T?s2 +2Ts + 1

where the parameter T is used to defined the speed of the response according to:
T, = nT

where T, is defined as the Observer response time where the step response reach 63% of
the steady state value of the response.

- So we will use T, as the tuning parameter for the Observer.

LabVIEW:

In LabVIEW we can use the “Polynomial Roots.vi” to find the roots based on the
Butterworth Polynomial

LabVIEW Functions Palette: Mathematics - Polynomial = Polynomial Roots.vi

Polynomial Roots. vi
23;3:

s

L

Tutorial: System Identification and Estimation in LabVIEW



57 State Estimation with Observers in LabVIEW

Polynomial Roots.vi

P(x) Sam Roots
option T\V error

Finds the roots of polynomial P(x). This VI removes leading coefficients of the polynomial
that are equal to zero. Wire data to the P(x) input to determine the polymorphic instance
to use or manually select the instance.

Below we see the Mathematics and the Polynomial palettes in LabVIEW.

Mathematics Raynomia
s @ Search | B iew ™
Ooner MIEW T
. [ Saw] [ Eaa] [[Saa] [[£au ] [ Saw]
4 &y M |4
B’ - [ x [] Add Poly Subtract Poly Multiply Poly Divide Poly Poly Composite
; 5 GCD LCM d
Mumeric Elementary Linear Algebra il e Jiu
» > PG B nth Derivative  Indef. Integral Integral
duf. [ gau] [ Saw] [Zau ]
(Dl s :
Z JHRARE Jxie)de w3 B8 [
= z Roots Classifi... Sort Complex... Unique Numb...
Fitting Interp & Extrap  Integ & Diff o]
i w o]
R It v Remove Zeros  Order of Poly  Polynomial Plot
[[Saa]
Prob & Stat Differential Eqs
4 = 4 Poly Evaluation Evaluate Poly...

% = Eﬂ [ zaw] [ Sax] L M »
P& [z 5 L
ek o0 P(x) ae

Geometry Script & Formula Poly From PFE  Poly Eigenvalue Orthogonal &... Rational

MathScript:

In MathScript we can use the roots function in order to find the eigenvalues based on a
given polynomial.

8.30bserver Gain

LabVIEW:

In LabVIEW we can use the “CD Ackerman.vi” to find the Observer gain based on some given
eigenvalues (found from the Butterwort Polynomial).

LabVIEW Functions Palette: Control Design & Simulation - Control Design - State Feedback
Design = CD Ackerman.vi

CD Ackermann.vi|
0+
-
N}éﬁl
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CD Ackermann.vi

State-Space Model M—CE)_ Gain
Poles - — - actual Poles
Gain Type [ Sy oo grror out

error in (no error)

Uses the Ackermann formula with the controllability matrix to determine the controller feedback gain matrix K that places the
closed-loop poles in the locations you specify. You also can use this VI to determine the observer gain matrix L that places the
observer poles in the locations yvou specify. You can use the CD Ackermann ¥I with single-input multiple-output (SIMO) or multiple-
input single-output (MISO) systems when placing closed-loop control or observer poles, respectively,

MathScript:

In MathScript we can use the acker function in order to find the Observer gain based on
some given eigenvalues (found from the Butterwort Polynomial).

8.40bservability

A necessary condition for the Observer to work correctly is that the system for which the
states are to be estimated, is observable. Therefore, you should check for Observability
before applying the Observer.

The Observability matrix is defined as:

C
0=| ¢4

CA;‘L—l
Where n is the system order (number of states in the State-space model).

- A system of order n is observable if O is full rank, meaning the rank of O is equal to
n.

LabVIEW:

The LabVIEW Control Design and Simulation Module have a VI (Observability Matrix.vi) for
finding the Observability matrix and check if a states-pace model is Observable.

LabVIEW Functions Palette: Control Design & Simulation - Control Design - State-Space
Model Analysis - CD Observability Matrix.vi

CD Observability Matrix.vi
0+

(]

CD Observability Matrix.vi

State-Space Model E=x) * Observability Matrix
Tolerance - [C‘.:A] s Observable?
error in (no error) == - "’“'Ln s Detectable?
error out

Calculates the Observability Matrix of the State-Space Model. You can use the observability matrix N to determine if the given system is observable, A
system of order n is observable if N is full rank, meaning the rank of N is equal to n. This VI also determines if the given system is detectable. A system is
detectable if all the unstable eigenvalues are observable.
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Note! In LabVIEW N is used as a symbol for the Observability matrix.

LabVIEW Example: Check for Observability

CD Observability Matrix.vi] ~ [Observability Matrix|
== ¥0BL]
4] . [Is Observable?
LI

[End of Example]

MathScript:

In MathScript you may use the obsvmx function to find the Observability matrix. You may
then use the rank function in order to find the rank of the Observability matrix.

MathScript Example:

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

1 % Check for Observability:
10 = obsvmx (discretemodel)
r

[End of Example]

8.5Examples

Here we will show implementations of an Observer in LabVIEW and MathScript.
Given the following linear state-space model of a water tank:

X1] _ [0 —107[*1 0.02

[562] _[0_0_],[962] + [T Ju

——
A B

y= o]+

Where x; isthe level in the tank, while x, is the outflow of the tank. Only the level x; is
measured.
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LabVIEW Example: Observer Gain

faatrix &)

[oBL] 1 -
Fatrix B CD Construct State-Space Model. vi CD Ackermann. vi
= = { =2 {#5L] |
[ - T ; “ale M &

Patrix ] Eefe) b3

DBL]M - i
1 - I-M @_ Polynomial Roots. vi
‘Matrlx_Dl (0B »—{"Tam

[oBLM P

|observer Gain (Predictive) ¥

CD Observabilty Matrix.vi]  [Qbservability Matrix
O

¥0BL]

[ c?».] ................................................. jsobservame?
I

We used the “Polynomial Roots.vi” in order to find the poles as specified in the Butterworth
Polynomial.

We use a 2.order Butterworth Polynomial:

B,(s) =T?s2 ++/2Ts + 1

where the parameter T is used to defined the speed of the response according to:

T, =nT &T=

T,
n

In the example we set T, = 2s and n = 2 in the example.
This gives:
B,(s) =s*+141s+1

So the coefficients in the polynomial are as follows:

P(x)

E’)O ?1

4(-“ ‘4
—
N
—

-~
—

Then we have used the “CD Akerman.vi” to find the Observer gain.

The result becomes:
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Observer Gain

£ |1,410
|-0,100

Qs

[End of Example]

LabVIEW Example: Observer Estimator

LabVIEW have several built-in Observer functions, e.g., the “CD Continuous Observer.vi” we
will use in this example. Below we see the Block Diagram for the Observer:

[
B
g Ltk :
[ 78]

State-Space Model |eseeeeed

Ao o
= Etop] aoE?
‘—\

The result is as follows:
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4,51
4,49

xi=y

x1_est

5_
4- //
r—|3_
E
2-|
1_
= T T IO B OO T O U OO SO O DT IO T U OO T T O OO
0 10 20 30 40 S0 e0 70 80 90 100
Simulation Time [s]
x2 =F_out - 0,0020
x2_est B | o,0020
0,01 -
0,008 -
— 0,006 -
Wi
o
£
0,004 -
0,002 -
0-|||||||||||||||||||||||||||||||||||||||||||||||||||
0 10 20 30 40 50 e0 70 80 90 100
Simulation Time [s]

[End of Example]

MathScript Example: Observer Gain

Here we will use MathScript in order to find the Observer gain for the same system as above.

The Code is as follows:

% Define the State-space model:
A [0 -10; O O]
B [0.02; 01;
c = [10];
D
s

=[0];

smodel = ss(A, B, C,D);

% Check for Observability:
O = obsvmx (ssmodel) ;
= rank (0) ;

$Butterwort Polynomial:

B2=[1, 1.41, 11;
p=roots (B2) ;

% Find Observer Gain

K = ackermann (ssmodel, p, 'L'")

K

The result is:
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K=1.41
-0.1

[End of Example]
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9 Overview of Observer functions

Observers are very similar to Kalman filters. In observers the estimator gain is calculated
from specified eigenvalues or poles of the estimator error dynamics (in other words: how
fast you want the estimation error to converge to real states).

In LabVIEW there are several VIs and functions used for Observer implementations.

9.1Control Design palette

In the “Control Design” palette we find subpalettes for “State Feedback Design” and
“Implementation”:

Control Design

o \liew

_:]:_ ’ ’ ’ nné' '
= = B
Model Constr... Model Inform... Model Conver... Model Interco...
¥ \ LLH”f C.tzz —

Time Response
' »

o

State-Space ...

e, b
NP.”
Analytical PID. .. Predictive Co...

. Dynamic Char... Model Reduct...

9.1.1 State Feedback Design subpalette

In the “State Feedback Design” subpalette we find VIs for calculation the Observer Gain, etc.

State Feedback Design

0+ -+ 0+

of L Jof - bf 1

Bu LOR Kalman
D Pole Place... CD Linear Qu... CDKalman G...

-+ -+

o ]
u=k.x

CD State Esti... CD State-Spa... CD Augment ...
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- Use the State Feedback Design VIs to calculate controller and observer gains for closed-
loop state feedback control or to estimate a state-space model. You also can use State
Feedback Design VIs to configure and test state-space controllers and state estimators in
time domains.

Ackermann VI:

CD Ackermann.vi|
0+
&
Mﬁn

CD Ackermann.vi

State-Space Model Ié?‘@' Gain
Poles P = Actual Poles
Gain Type .._,E [l Boogrror out

error in (no errar)

Uses the Ackermann formula with the controllability matrix to determine the controller feedback gain matrix K that places the
closed-loop poles in the locations you specify. You also can use this VI to determine the observer gain matrix L that places the
observer poles in the locations you specify, You can use the CD Ackermann VI with single-input multiple-output (SIMO) or
multiple-input single-output {MISO) systems when placing closed-loop control or observer poles, respectively.

9.1.2 Implementation subpalette

In the “Implementation” subpalette we find Vs for implementing a discrete Observer and a
discrete Kalman Filter.

o Nigw

0

CD Discrete T... CD Discrete Z... CD Discrete 5... CD State Fee...

Tt T
Aets -y

CD Discrete S, CD Discrete , CD Discrete K...

- Use the Implementation Vis and functions to simulate the dynamic response of a discrete
system model, deploy a discrete model to a real-time target, implement a discrete Kalman
filter, and implement current and predictive observers.

Discrete Observer:

[Discrete Observer

Tutorial: System Identification and Estimation in LabVIEW



66 Overview of Observer functions

Discrete Observer

Output y{k)
Initialize -
Input u(k) Estimated Output yhat{k)
I@I L predicted State Estimate xh...
L Corrected State Estimate xh...
error out

error in (no error)

Implements a discrete-time observer for a linear state-space system model.

9.2Simulation palette

In the “Simulation” palette we find the “Estimation” sub-palette:

Simulation
4 | Q search | & view~

Control & Sim...

» =5 » »
Signal Genera... Signal Arithm. .. Gramws
55> 59> L
Continuous Li... Monlinear Sys... Discrete Line..
L ; oL
Utilities Lookup Tables

»

9.2.1 Estimation subpalette

In the “Estimation” palette we find VIs for implementing continuous/discrete Observers and
Kalman Filter.

Estimation

1 Search | oo View ™
Q

bl
[e¢

Continuous O... Discrete Obs...
—0Q0 -OQ0

Continuous K... Discrete Kalm... Continuous E... Discrete Exte...
FEQTH FEQ0H
(5] (=]

Discrete Stoc... Continuous M... Discrete Monli...

¢
£l

[
om
==
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Overview of Observer functions

- Use the Estimation functions to estimate the states of a state-space system. The state-
space system can be deterministic or stochastic, continuous or discrete, linear or nonlinear,

and completely or partially observable.

Continuous Observer VI:

CD Continuous Observer.vil

O

Continuous Observer
[CD Continuous Observer.vi]

Output y(t)

Input u(t)

State-Space Model

Initial state estimate xhat...

Estimated Output vhat(t)

| o

Observer Gain

Implements an observer for a continuous linear time-invariant (LTI) state-space model.

T = * Estimated State xhat(t)

Discrete Observer VI:

F]

Discrete Observer
o0

Output y{k)

FESEET :

Input u(k) —2

Dis

crete Observer

Estimated Output yhat{k)

@_L

Implements a discrete-time observer for a linear state-space system model.

Predicted State Estimate xh...
B - Corrected State Estimate xh...
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10 System ldentification in LabVIEW

The model can be in form of differential equations developed from physical principles or
from transfer function models, which can be regarded as “black-box”-models which
expresses the input-output property of the system. Some of the parameters of the model
can have unknown or uncertain values, for example a heat transfer coefficient in a thermal
process or the time-constant in a transfer function model. We can try to estimate such
parameters from measurements taken during experiments on the system.

Here we will discuss:

e Parameter Estimation and the Least Square Method (LS)
e Sub-space methods/Black-Box methods
e Polynomial Model Estimation: ARX/ARMAX model Estimation

In LabVIEW we can use the “System ldentification Palette”.

Control Design & Simulation

o \liew ¥

e > -

)

Simulation Control Design\ System Ideny
1 XXt
’ofET Fuzzy
W Fuzzy Logic Sim Interface

The “System Identification” palette in LabVIEW:

System Identification

—T I »
P P =
Preprocessing Parametric Frequency Grey-Box Recursive
- I mu| [
alte, = LiHit G(s)
MNonparametric Validation Analysis Conversion
Gt 2 4
A ®
Management Utilities

In the next chapters we will use the different functionality available in the System
Identification Toolkit.
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10.1 Parameter Estimation with Least Square
Method (LS)

Parameter Estimation using the Least Square Method (LS) is used to find a model with
unknown physical parameters in a mathematical model.

The Least square method can be written as:

Y = ®6
Where
0 is the unknown parameter vector
Y is the known measurement vector
@ is the known regression matrix
The solution for 8 may be found as:
0 =01y

It can be found that the least square solution for Y = ®Y is:

GLS = ((DTCD)—].(DTY

Implementation in MathScript/MATLAB:

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

In LabVIEW we can use the blocks (“AxB.vi”, “Transpose Matrix.vi”, “Inverse Matrix.vi”) in
the “Linear Algebra” (located in the Mathematics palette) palette in order to fin the Least
Square solution:
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@ | Q search | R customize~
i
i ]
Create Speci... Create Real Matrix
[E3e] [3e] [E3e] (3] (3]
EX (IR L] i1
Solve Linear Egs Dot Product Outer Product AxB Kronecker Prod
[E2e) [2e] [E2e] (2] [E2e] (1) (2]
L] Lt Lieat] o152 [He
Determinant Yector Norm Matrix Norm Matrix Rank Trace Test Matrix T, Condition Nu.
[E3e] [1e] [3em] [E3e] [ [E3e] [
By ] E Ler] (e
Inverse Matrix Pseudolny Transpose Matrix Sqrt Matrix Exp Matrix Power Matrix Log
LEy [ = e e
[om m - e -
8] tisi) ) 'S
w Cholesky R D Generalized SVD
(2] (2] [E1e) (2] (2]
e
Schur Hessenberg Qz Sylvester Eqs  Lyapunov Egs
[E3e] [ (2] [3ea] [E3em]
Eigenvalues a... GeneralizedE... Matrix Balance Back Transfor... Matrix Chara, BLAS

We can also use the “Solve Linear Equations.vi”:

Solve Linear Equations.vi

Input Matriy =s=seaes
Known Yector = |
matrix type

Solution Yector
errar

Solves a linear system AX =¥, The data types vou
wire to the Input Matrix and Known ¥Yector
inputs determine the polymorphic instance to use,

Example:

Given the following model:
y(u) =au+b

The following values are found from experiments:

y(1) =0.8
y(2) =3.0
y(3) = 4.0

We will find the unknowns a and b using the Least Square (LS) method in
MathScript/LabVIEW.

We have that:

Where
6 is the unknown parameter vector

Y is the known measurement vector
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@ is the known regression matrix
The solution for 8 may be found as (if @ isa quadratic matrix):

0=y

It can be found that the least square solution for Y = ®0 is:

0, = (PTd) 1dTY

We get:
0.8=a-1+b
30=a-2+b
40=a-3+Db
This becomes:
0.8 1 1
[3.0] = [2 1] [Z]
40l 13 17
Y @

MathScript:

We define Y and @ in MathScript and find 6 by:

phi = [1 1; 2 1; 3 11;
Y = [0.8 3.0 4.0]";

theta = inv (phi'*phi)* phi'*Y

%or simply by
theta=phil\Y

The answer becomes:

theta = 1.6
-0.6
i.e.:
a=1.6
b=-0.6
This gives:
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y(u) = 1.6u—0.6

LabVIEW:

Block Diagram:

@_ Transpose Matrix.vi & % B.vil Inverse Matrix.vi] & % B.vil 4 x B.vi| thetal
e e s [Tl T — Greae] e boacacacacacacas [T [ ———— [ 63 (0] »oBL]
| ] gt e L = — [ B
i
[DBL);
Front Panel:

o
=

s
o
-
ERD S &
= wl o
w
‘-’1 -
o
=l ?-_'wgﬂ w*.-_'(ﬂ > =3
(0] ™~ —
1 i-"i'-u S"{"ﬂ T
— P —
-’1 -
‘-'Q =
o o

.{-’1‘*.-
o

We can also use the “Solve Linear Equations.vi” directly:

ﬁ_ Solve Linear Equations. vi|
[oBL) »oBL]
]

[DBL)

[End of Example]

10.2 System ldentification using Sub-space
methods/Black-Box methods

Sub-space methods/Black-Box methods is used to find a model with non-physical
parameters.

A sub-space methods/Black-Box method estimates a linear discrete State-space model on
the form:

Xk+1 = Axk + Buk
VYV = ka + Duk
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LabVIEW offers functionality for this. In the “Parametric Model Estimation” palette we find
the “Sl Estimate State-Space Model.vi” which can be used for sub-space identification.

“Parametric Model Estimation” palette:

Parametric Model Estimation

1@ Q,, Search | € Customize ™
SI Estimate State-Space Model.vi
= LEl=g
9'-::1:
TF Est Estimate Orders
=D =D
P 2
TF Model User-Defined
=D =D
ﬁ AR %M
AR Model ARY Model ARMAY Model
= ] [+ +3]
ﬁ OE| § BJ ﬁ Gl
OE Model BJ Model GL Model

SI Estimate State-Space Model.vi

structure selector 3 [ Kalman gain
stimulus signal EYe] system model out
response signal & = g ss coefficients of state-space...
number of states E - HL—noise

51 Estimate State-Space Model.vi] | &frorin {no error) error out

= = initial states

@ ss| Estimates the parameters of a state-space model for an unknown system,
[Subspace SIS0 (WDT) || You must manually select the polymorphic instance to use.

This VI estimates the parameters of a state-space model for an unknown system.

10.3 System ldentification using Polynomial
Model Estimation: ARX/ARMAX model
Estimation

LabVIEW offers VIs for ARX/ARMAX model estimation in the “Parametric Model Estimation”
palette.
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1@ Q Search é% Customize ¥

= = s
g o
TF Est Model Est Estimate Orders
=D =D
ﬁ TF| g ss

F Model 5SS Model

=5 =
E AR § AR
AR Model ARX Model

MY=m =
OE BJ

OE Model BJ Model GL Model

For ARX models we can use “Sl Estimate ARX model”:

SI Estimate ARX Model.vi

stimulus signal ] system model out
response signal ::j ﬁgnx 1:-‘fcoefficients of ARX model
orders of AR¥ model E E noise
error in {no error)

error out

SI Estimate ARX Model.vi| | Estimates the parameters of an ARX model For an unknown system, Wire
e+ ]+

—m data to the stimulus signal and response signal inputs to determine
ﬁ.&mx the polymorphic instance to use or manually select the instance.

For ARMAX models we can use “Sl Estimate ARMAX model”:

SI Estimate ARMAX Model.vi
stimulus signal IETe] system model out
response signal =4 ﬁ;v t=coefficients of ARMAX model
orders of ARMAX model e — Bﬂmnoise
error in (no errar) error out
SI Estimate ARMAX Model.vi| | Estimates the parameters of an ARMAX model For an unknown system. Wire
:’“‘f" data to the stimulus signal and response signal inputs to determine the
% . polymorphic instance to use or manually select the instance.

10.4 Generate model Data

In order to find a model we need to generate data based on the real process. The stimulus

(exitation) signal and the response signal will then be input to the functions/VIs (algorithms)
in LabVIEW that you will use to model your process.

Below we explain how we do this in LabVIEW.
Datalogging:
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Use LabVIEW for exciting the process and logging signals. Use open-loop experiments (no
feedback control system). You can use the Write to Measurement File function on the File
I/O palette in LabVIEW for writing data to text files (use the LVM data file format, not the

TDMS file format which give binary files).

In the File I/O palette in LabVIEW we have lots of functionality for writing and reading files.

Below we see the “File I/O” palette in LabVIEW:

In this Tutorial we will focus on the “Write To Measurement File” and “Read From

le I/0
‘i} l QSearch' Q%Customize'

5
e
!ma‘
--
1]

Write Spread...

0

Open/Create...

abc

‘Write Text File

Al

Build Path

rous|

&a”

[=]
—

Q

[o]
-
]

Read Spread...

)

Close File

abc

0200

Write Meas File Read Meas File

TAK!

[ ]
+

Format Into File  Scan From File

AN

Go'
o101

Read Text File ‘Write Binary File Read Binary File

e

Strip Path

Ej’

TDM Streaming  Storage/Data...

i

Waveform Fil...

[Far] »

File Constants

g

Zip

»
@-
O

Config File ¥Is

XL

'v

XML
[ LM

Y%

Adv File Funcs

Measurement File”.

»

»

> »
»

»

»

Write To
Measurement
File

» Signals

v v v ¥

Read From
Measurement
File

vyvvvwvw

The “Write To Measurement File” and “Read From Measurement File” is so-called “Express
VIs”. When you drag these VI’s to the Block Diagram, a configuration dialog pops-up

immediately, like this:
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B! Configure Write To Measurement File [Write To Measurement File2]

Eil
F

c:\TempiLabVIEW Data\test.lvm

Action
() Save to one file
[ Ask user to choose file
Ask only once
Ask each iteration
If a file already exists
(3) Rename existing file
(O Use next available filename
(O Append to file
(O Overwrite file

(O save to series of files (multiple files)

File Description

File Format
(®) Text (LyM)

(O Binary (TDMS)
(O Binary with XML Header (TDM)

Segment Headers

(5) One header per segment
(O One header only
(O Mo headers

X ¥Yalue (Time) Columns

(O One column per channel
(O One column only

(3) Empty time column
Delimiter

() Tabulator

Comma

| Advanced...

[ OK ] ’ Cancel l ’ Help

l

In this configuration dialog you set file name, file type, etc.

Note that these “Express VIs” have no Block Diagram.

10.4.1

It is important to have a good excitation signal, you can use different excitation signals, such

as:

Excitation signals

e A PRBS signal (Pseudo Random Binary Signal)

e A Chirp Signal
e A Up-down signal

LabVIEW:

In LabVIEW you can use some of the functions in the Signal Generation palette:
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Signal Generation

Q Search | oo View ™
Joc Jos
SigGen Duration  Tones & Moise
o Jos Jo
T B s I W
Gauss-Mod Sine  Gauss Monop...  Sinc Pattern
oo Joe Joc
B N B
Sine Pattern  Triangle Pattern  Pulse Pattern
o Jac e
i) — o
Sine Wave Triangle Wave  Square Wave
S o o
| o riity
Uniform Moise  Gaussian Noise  Random MNoise
== ==Y Jos
Gamma Noise Poisson Moise  Binomial Noise  Bernoulli Noise Pulse Train

LabVIEW Functions Palette: Signal Processing = Signal Generation

PRBS Signal
A PRBS signal looks like this:

R U e
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

LabVIEW:

In LabVIEW you can use the “Sl Generate Pseudo-Random Binary Sequence.vi” function.

LabVIEW Functions Palette: Control Design & Simulation = System identification = Utilities
- Sl Generate Pseudo-Random Binary Sequence.vi

SI Generate Pseudo-Random Binary Sequence. vil

e+ ]+
\j
FRES
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SI Generate Pseudo-Random Binary Sequence.vi

samples K= PRBS
polynomial order
see d FRES
upsampling fFactor

Generates a Pseudo-Random Binary Sequence (PRBS).

Chirp Signal
A Chirp signal looks like this:

T

0,5- h

0,25-

0-

2o

-0,5-

-0,75- v | V y V

1= 1 1 ] 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time

LabVIEW:
In LabVIEW you can use the “Chirp Pattern.vi” function.

LabVIEW Functions Palette: Signal Processing = Signal Generation - Chirp Pattern.vi
Chirp Pattern.vi|

oo

G gl
Y

Chirp Pattern.vi
samples - oo Chirp Pattern
amplltut'ﬂ: oot error
f2

Generates an array containing a chirp pattern.
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11 Overview of System lIdentification

functions

In LabVIEW we can use the System Identification Toolkit.

Control Design & Simulation

Fuzzy

FUzzy Logic Simb Interface

' » »
) -+
i £
Preprocessing Parametric
I-OD\ ¥ @ t’
L =]
Monparametric Validation
' » ' »
A R®
Mahagement Ultilities

»

-]+

: - S
-]+
Pl P =5
Frequency Grey-Box Recursive
I I I"’ nn+ '
LL‘H‘" G(S]
Analysis Conversion

- Use the System Identification VIs to create and estimate mathematical models of dynamic
systems. You can use the Vls to estimate accurate models of systems based on observed

input-output data.

The “System Identification” palette in LabVIEW has the following subpalettes:

Icon

Name

Description

-
£

Preprocessin
g

Data Preprocessing

Use the Data Preprocessing Vls to
preprocess the raw data that you acquired
from an unknown system.
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=’ Parametric Model Estimation | Use the Parametric Model Estimation VIs to
Lt estimate a parametric mathematical model
Parametric for an unknown, linear, time-invariant
system.
~= Frequency-Domain Model Use the Frequency-Domain Model
L Estimation Estimation VIs to estimate the frequency
Frequency response function (FRF) and to identify a
transfer function (TF) or a state-space (SS)
model of an unknown system.
=’ Partially Known Model Use the Partially Known Model Estimation
¥ Grey- Estimation Vis to create and estimate partially known
Box models for the plant in a system.
t%é Recursive Model Estimation Use the Recursive Model Estimation VIs to
recursively estimate the parametric
Recursive mathematical model for an unknown
system.
o, Nonparametric Model Use the Nonparametric Model Estimation
allu Estimation Vls to estimate the impulse response or
Nonparamet frequency response of an unknown, linear,
ric time-invariant system from an input and
corresponding output signal.
@rt' Model Validation Use the Model Validation Vls to analyze and
| validate a system model.
Validation
s Model Analysis Use the Model Analysis VIs to perform a
—— Bode, Nyquist, or pole-zero analysis of a
Analysis system model and to compute the standard
deviation of the results.
= L Model Conversion Use the Model Conversion Vls to convert
L] models created in the LabVIEW System
Conversion

Identification Toolkit into models you can
use with the LabVIEW Control Design and
Simulation Module. You can convert an AR,
ARX, ARMAX, output-error, Box-Jenkins,
general-linear, or state-space model into a
transfer function, zero-pole-gain, or state-
space model. You also can convert a
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continuous model to a discrete model or
convert a discrete model to a continuous

model.
{g’ﬂ’ Model Management Use the Model Management VIs to access
information about the system model.
Managemen Model information includes properties such
t as the system type, sampling rate, system

dimensions, noise covariance, and so on.

3¢ E Utilities Use the Utilities Vs to perform
miscellaneous tasks on data or the system

Utilities model, including producing data samples,
displaying model equations, merging
models, and so on.

The “Data Preprocessing” palette in LabVIEW:

Search | oo Wiew™

L= 494+ ]+ =] 494+ ]+ 0+
" A Tl il Y]
Wy e ﬁ‘ﬁ%‘ i E” B
Rebuild Data  Remove Trend Mormalize Down Sampling Split Signal
= 49+ + [+ =
! +0LO—+
la tod
Lowpass Filter  Bandpass Filter  Det Feedback

Some important functions in the “Data Preprocessing” palette are:

SI Split Signal. vi

4+ ]+

-8
~B

SI Split Signal.vi

stimulus signal in =]
res ignal in = E*E
ponse signal in = b
1st portion (%)

stimulus signal 1
E=response signal 1
E L'stimulus signal 2

response signal 2

Splits stimulus and response signals into two parts. Use one set of signals for model estimation and
one for model validation. Wire data to the stimulus signal in and response signal in inputs to
determine the polymorphic instance to use or manually select the instance.
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The “Parametric Model Estimation” palette in LabVIEW:

Parametric Model Estimation

o Wiew ¥
= = 49+ + [+ = M
ﬁ TF| ﬁ s§| ﬁ g gﬁl
TF Model 5SS Model User-Defined  Polynomial M. ..
o=

=, R =

2 § =5
TF Est Model Est Estimate Orders

Some important functions in the “Parametric Model Estimation” palette are:

51 Estimate Transfer Function Model.vi|
49+ -+ ]+

=2
TF

|Continuous SISO (WDT) ||

SI Estimate Transfer Function Model.vi

delay initial quess (s)

stimulus signal #:+0 system model out
response signal fﬁ" %= coefficients of transfer fu...
orders of transfer function... ﬂ - Enl;delay (s)
error in {no error) error out

Estimates the parameters of a continuous or discrete transfer function model For an unknown system. This VI
estimates only the transfer function between the stimulus and the response. The transfer function between the
noise and the response is assumed to be 1. You must manually select the polymorphic instance to use.

SI Estimate State-Space Model. vil
"]

)

[Subspace 5150 (WDT) ||

SI Estimate State-Space Model.vi

structure selector 3 [ Kalman gain
stimulus signal (=] system model out
response signal = Wz B coefficients of state-space...

number of states :lJ -t tnoise

error in (no error) error out
initial states

Estimates the parameters of a state-space (55) model for an unknown system. You must manually select the
polymorphic instance to use.

The “Parametric Model Estimation” palette in LabVIEW has subpalette for “Polynomial

Model Estimation”:
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Polynomial Model Estimation

o \liew ¥

AR Model AR Model OE Model ARMAY Model BJ Model GL Model

- Use the Polynomial Model Estimation Vls to estimate an AR, ARX,ARMAX, Box-Jenkins, or
output-error model for an unknown, linear, time-invariant system.

Some important functions in the “Polynomial Model Estimation” palette are:

SI Estimate ARX Model.vil
=

iR
ARY

SI Estimate ARX Model.vi

stimulus signal ] system model out
response signal ?” &= coefficients of ARX model
orders of ARX model = Anxmtnoise
error in (no errar) error out

Estimates the parameters of an ARX model for an unknown system. Wire data to the stimulus signal and
response signal inputs to determine the polymorphic instance to use or manually select the instance.

SI Estimate ARMAYX Model.vi

SI Estimate ARMAX Model.vi

stimulus signal 0+ system model out
response signal g;x b coefficients of ARMAX model

orders of ARMAX model - L-noise
error in (no error) -—jm ma-uerror out
Estimates the parameters of an ARMAX model for an unknown system, Wire

data to the stimulus signal and response signal inputs to determine the
polymorphic instance to use or manually select the instance.
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12 System ldentification Example

We want to identify the model of a given system.

We have found the model to be:

1
3'c=—?x+Ku(t—T)

where

T is the time constant

K is the system gain, e.g. pump gain
T is the time-delay

- We want to find the model parameters T, K, T using the Least Square method. We will
use LabVIEW and MathScript.

a )
o Set the system on the form y = @0

Solutions:
We get:
1
&: [x u(t—1)] T
y @ K
0
i.e.
1
6=\ T
K

In order to find 8 using the Least Square method we need to log input and output data.
This means we need to discretize the system.

We use a simple Euler forward method:

i~ Xk+1 — Xk
T

T, is the sampling time.
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This gives:
Xe+1 — Xk e u, t1|-— 1
T [ erl|TT
: K
_y—’ @ —

Let’'s assume T = 3s (which can be found from a simple step response on the real system),
we then get (with sampling time T; = 0.1):

1
X — X —
M — [xk uk—30] T
R —
y 6

Note! In 3 seconds we log 30 points with data using sampling time T, = 0.1!1!

Given the following logging data (the data is just for illustration and not realistic):

k u y
1 0.9 3
2 1.0 4
3 11 5
4 1.2 6
5 13 7
6 1.4 8
7 1.5 9

We use the following sampling time: T, = 1s

From a simple step response, we have found the time-delay to be: 7 = 3s.
- Set the system on the form Y = ®0

Solutions:

With time-delay 7 = 3sand T, = 1s we get:
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1
X - X —
k+1 k — [xk uk—S] —T
~——————
Y ]

Using the given data set we can set on the form Y = $0:

6 09
7 1.0
8 1.1

i.e.:
1 6 09 1
11=17 10| T
\_L 8 111l K
Y o] 0

Note! We need to make sure the dimensions are correct.

- We find the model parameters (0) using MathScript

MathScript gives:

clear, clc

phit =161, 09 S0 8

theta = philY

sor
theta = inv (phi'*phi) *phi'*Y

T
K

-1/theta (1)
theta (2)

MathScript responds with the following answers:

theta =
-0.3333
3.3333
T =
3
K =
3.3333
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i.e., the model parameters become:

Which gives the following modell:

X = ! + Ku(t

X = Tx u(t —1)
With values:

1 100

@ Implement the model in LabVIEW.Use T =5, K=2, T=3 and
simulate the system. Plot the step response for the system.

Model:

X = 1 + Ku(t

X = Tx u(t —r1)
Where T=5, K=2, 1=3

Solutions:

We implement the model using a “Simulation Subsystem” and use the available blocks in the
Control and Design Module.

The model may be implemented as follows:

. Dynamic Model with Time Delay.vi Block Diagram

File Edit View Project Operate Tools Window Help TModel
ith

:{)l@l |_Q||E Ilﬂ:ll'a.luﬁ | 13pt Application Font |~ || 8o+ || Spa~ | |C§'jv.@ |..Q ‘ Delay

A

- (s - o ?
DBL ¥ @ ! %I E: a (+__ % | HPDBL
L_ xle—[@__
Tl [DBL# —
v
< | 3
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We simulate the system using the following program:

Block Diagram:

B Step Response with Logging to File2.vi Block Diagram

[ File Edit Yiew Project Operate Tools Window Help Step
(1] (][] o] [ opcsionront o] (5~ o a zll~=
~
000000000000 0000000 b |
b '
[DBL K ° PDBL ] ¥
>
>
Dynamic Model with Time Delay.vi Fiot ] b i
& >
Ho_| IE E »OBL] g »
[ Write To
E Measurement
[DBL Y File
Delay] lo— Signals
ToBLY
ooop—+ <« B D
OooOoo0o0O00000000000000 o
b4
< b

Front Panel:

We do a simple step response:
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B! Step Response with Logging to File2.vi Front Panel

File Edit View Project Operate Tools Window Help Step
BE 7E|| 13pt Application Font | = ||;,;,v”.~u;.||ﬁv| [+ Q [[P][Ee=*
Control Signal, u [¥] - | 1,00 Lo
u
2 27
1,8 183
1,67
1,6 o
1,47
1,4 g
=g
2 s 19
1= 0,87
0,8 0,6-;
0,6 0,47
0,4 E
s O IS —————~
U 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
@ 1 3 t[s]
Output x |~ RS
: 12,57
5 v
K
2 = 3
Delay Time Step [s] *x 7,54
3 S 0,1 b
2,54
I I O O O O T
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
i
Enable Logging to File Filename
9, M:\Work| Tutorials\Cybernetics\Systemidentifikasjon\Oppaaveheftelcodeldata2. lvm E‘
v
< >

Find the transfer function for the system:

Plot the step response for the transfer function in MathScript. Compare and discuss the
results from previous task.

Solutions:

We use the differential equation:
. 1
X = —?x+Ku(t—T)

Laplace transformation gives:
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sx(s) = —%x(s) + Ku(s)e™™

Note! We use the following Laplace transformation:

|F(s)e‘” < f(t - T)|

sF(s) & f()

Then we get:
1
sx(s) + Tx(s) = Ku(s)e™
and:
1
x(s) (s + T) = Ku(s)e™™
and:
x(s) _ K
u(s) s+ %
Finally:
x(s) KT Kot
H — - —TSs — —Ts
() u(s) Ts+le Ts+1e
With values (T =5, K =2, 7= 3)
x(s 10
H(s) = () —3s

u(s) “5s+1 ¢
MathScript:

We implement the transfer function in MathScript and perform a step response. We use the
step() function.

clear, clc

H XN 0
I

tf('s');
28
5g

Hl=tf (K*T/ (T*s+1)) ;
delay=3;

H2=set (H1, '"inputdelay',delay) ;
step (H2)

Tutorial: System Identification and Estimation in LabVIEW
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% You may also use:

figure (2)

H = sys orderl (K*T, T, delay)
step (H)

The step response becomes:

P! Plot 1
File Edit Yiew Project

Operate Tools Window Help

Graph Step Response
10—

Amplitude
T

1 I 1 I I 1 1 1 I 1 1 I 1 1 1 I 1 1 I
0 2 4 6 8§ 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Time (s)

- We see that the step response is the same as in the previous task.
y/-‘ "\'
6 Log input and output data based on the model.
Model:

) 1

X = —Tx+Ku(t—T)

Where T =5, K=2, t=3

Solutions:

We save the data using “Write To Measurement File” in LabVIEW.
Based on a simple step response we can find the time-delay .

We use the same application as in a previous task:
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B Step Response with Logging to File2.vi Block Diagram [g@
[ File Edit Yiew Project Operate Tools Window Help Step
©[1][@][25] [wal@P| o7 [ 130t appication Font |~ | [2a~][a~] €5 ][2al] [ Q 2]
~
000000000000 0000000 0
b '
[DBL K ° PDBL ] ¥
b
Dynamic Model with Time Delay.vi Fiot ] b i
] b o ' ’
[ Write To
E Measurement
[DBL DJ File
E =t signals
[DBL ¥

= ‘1@" .........

00000000000000000000

[<

|~

@ Find the model parameters (T og K) using Least Square in LabVIEW based on the
logged data.

Note! The answers shouldbe T =5 and K = 2.
Model:
1
X = —Tx+Ku(t—T)
Where T=5, K=2, 1=3

Solutions:

It is a good idea to split your program into different logical parts using, e.g., SubVls in
LabVIEW.

Get Logged ’ \ Transform e
. > Least Square
Data from File u Y, © ; 3]
'Y Solution

The different parts/steps could, e.g., be:

1. Get Logged Data from File
a. Input: File Name
b. Outputs: u and y (Tyue)
2. Transform the data and stack datainto Y and &
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a. Inputs: u and y (T,py)
b. Outputs: Y and &
3. Find the Least Square solution 8, = (®Td) 1dTY
a. Input: Y and @
b. Output: 6 (6, K})

LabVIEW code:

Block Diagram:

b Least Square for Dynamic System with Delay.vi Block Diagram
File Edit View Project Operate Tools Window Help

\QIlE Dﬁ 13pt Application Font | ”gn_v".’fll mlﬂ

[Create LS Matrices from Logged Data with Time Delay.vi [Find LS Solution.vi]

(Open Measurement Data from File. vi El N
0
L=

pen
lLogged
Dats
$0B1]

[52]]

[ 1
Xet1 Xk _xe U _ty|—=
T. [ Ts] T
N — K
pa |
———
Y 6
< > =

Front Panel:
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P Least Square for, Dynamic System with Delay.vi Front Panel

File Edit View Project Operate Tools Window Help 3
= == [prm =
Y I@I [QWIE | 13pt Application Font |+ || :Dv'l i ”ﬁv' |._‘ Q ”2' 3
A
Measurement File
% M:\Work) TutorialsiCybernetics\Systemidentifikasjon\Oppgavehefte\codeldataz. lvm E‘
U U Ts o phi theta
7 — 7 — 2 7 — P )
ﬂ” 0 aﬂ 0 5)0,1 ﬂﬂ 0 aﬂ 0 0 0 30 o2
— — — 2 ,
0 0 a a 1] o 0 0 2
P— — P—
0 0 Delay ] 0 0 0 5
— — A3 — Y
0 0 o 0 0 0 0
P— P— P— 2x1
0 0 0 0 0 0 x
P— P— P—
0 0 0 0 0 0
P— P— P—
0 0 0 0 0 0
P— P— P—
0 0 o 0 0 0
P— P— P—
0 0 (1) 0 0 0
P— P— P—
0 0 0 0 0 0
] E— ]
0 0 (1) 0 0 0
P— — P—
0 0 1) 0 0 0
P— — ] P—
0 0 (i) 0 0 0
P— — P—
0 0 1) 0 0 0
0 0 ) 0 0 0
P— P— P—
0 0 0 0 0 0
P— S— P—
0 0 0 0 0 0
P— P— P—
0 0 (1) 0 0 0
Nx1 Mx1 (N-1)x 1 (N-1)x 3
size(s) size(s) 2
S, P
| o
v
< >

- Asyouseetheresultis T =5 and K = 2 (as expected).

The different SubVI’s do the following:

1. “Open Measurement Data from File.vi”

This SubVI opens the logged data from file (created in a previous task).

Block Diagram:

>

[Measurement File]  |» )

v ad i

» »

Read From
Measurement - ‘
File [Convert from Dynamic Data Array Size ‘@
Signals =) S @t—; 132]

Index Array]
[ .
D— o B »BL] »oBL]

Index Array]

i
@

e POBL] BDBL]
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2. “Create LS Matrices from Logged Data with Time Delay.vi”

This SubVI “stack” data on the form:

X1 — Xk _ [xk uk_L] ——

Ts
S
—_ P’ LKl
y 0

Block Diagram:

P Create LS Matrices from Logged Data with Time Delay.vi Block Diagram

File Edit Yiew Project Operate Tools Window Help
@‘E’Dﬁr 13pt Applcation Fort |+ | (35 |[a~] 65+ ][24)]
~
o I 1
beiay] Xk+1 — Xk X U,_t7|—=
k——
Ez . [ T, ] T
g T s
s K
~————
> g ’ o
[Fisfos
L.
_1>—nm]
%)
— |
b1 w o - —~
o El. m [ [
v
< 3

3. “Find LS Solution.vi”

This SubVI find the LS solution:

0,5 = (PTd) 1dTY

Block Diagram:

In LabYIEW we can use different blocks to solve Y=Phi*theta| Y . (I) 9
These 3 methods should give the same results -

0,c = (PTD) 1oTY
% o ) A % B’.vi [fnverse Matrix.vi A xj’.vi X i

#DBL]

Pseudolnverse Matrix. vi
e

heta (method2

#oBL]

Solve Linear Equations. vi

Eheta (method3)

#DBL]
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