
https://www.halvorsen.blog	 	

https://www.halvorsen.blog/documents/automation/	 	

	

	

	

	

System	Identification	 	
and	Estimation	in	LabVIEW	

Hans-Petter	Halvorsen	

	

	

	

	

System	Identification	and	Estimation	in	LabVIEW	
	

Hans-Petter	Halvorsen	

Copyright	©	2017	

	

E-Mail:	hans.p.halvorsen@usn.no	 	

Web:	https://www.halvorsen.blog	 	

	

https://www.halvorsen.blog	

	

i	

Preface	
This	Tutorial	will	go	through	the	basic	principles	of	System	identification	and	Estimation	and	
how	to	implement	these	techniques	in	LabVIEW	and	LabVIEW	MathScript.	

LabVIEW	is	a	graphical	programming	language	created	by	National	Instruments,	while	
LabVIEW	MathScript	is	an	add-on	to	LabVIEW.	LabVIEW	MathScript	has	similar	syntax	as,	
e.g.,	MATLAB.	LabVIEW	MathScript	may	be	used	as	a	separate	part	(and	can	be	considered	
as	a	miniature	version	of	MATLAB)	or	be	integrated	into	the	graphical	LabVIEW	code	using	
the	MathScript	Node.	

The	following	methods	will	be	discussed:	

State	Estimation:	

• Kalman	Filter	
• Observers	

Parameter	Estimation:	

• Least	Square	Method	(LS)	

System	Identification	

• Sub-space	methods/Black-Box	methods	
• Polynomial	Model	Estimation:	ARX/ARMAX	model	Estimation	 	

	

Software	

You	need	the	following	software	in	this	Tutorial:	

• LabVIEW	
• LabVIEW	Control	Design	and	Simulation	Module	
• LabVIEW	MathScript	RT	Module	(LabVIEW	MathScript)	

	

“LabVIEW	Control	Design	and	Simulation	Module”	has	functionality	for	creating	Kalman	
Filters	and	Observers,	but	it	also	has	functionality	for	System	identification.	

	

ii	

Table	of	Contents	
Preface	...	i	

Table	of	Contents	..	ii	

1	 Introduction	to	LabVIEW	and	MathScript	...	5	

1.1	 LabVIEW	..	5	

1.2	 LabVIEW	MathScript	..	6	

2	 LabVIEW	Control	and	Simulation	Module	...	9	

3	 Model	Creation	in	LabVIEW	..	11	

3.1	 State-space	Models	...	12	

3.2	 Transfer	functions	...	15	

3.2.1	 commonly	used	transfer	functions	..	17	

4	 Introduction	to	System	Identification	and	Estimation	..	24	

5	 State	Estimation	with	Kalman	Filter	..	26	

5.1	 State-Space	model	...	27	

5.2	 Observability	...	29	

5.3	 Introduction	to	the	State	Estimator	..	30	

5.4	 State	Estimation	..	36	

5.5	 LabVIEW	Kalman	Filter	Implementations	..	38	

6	 Create	your	own	Kalman	Filter	from	Scratch	..	44	

6.1	 The	Kalman	Filter	Algorithm	..	44	

6.2	 Examples	...	45	

7	 Overview	of	Kalman	Filter	VIs	...	49	

7.1	 Control	Design	palette	...	49	

7.1.1	 State	Feedback	Design	subpalette	..	49	

7.1.2	 Implementation	subpalette	...	50	

iii	 	 Table	of	Contents	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

7.2	 Simulation	palette	...	51	

7.2.1	 Estimation	subpalette	...	51	

8	 State	Estimation	with	Observers	in	LabVIEW	..	54	

8.1	 State-Space	model	...	54	

8.2	 Eigenvalues	..	56	

8.3	 Observer	Gain	..	57	

8.4	 Observability	...	58	

8.5	 Examples	...	59	

9	 Overview	of	Observer	functions	..	64	

9.1	 Control	Design	palette	...	64	

9.1.1	 State	Feedback	Design	subpalette	..	64	

9.1.2	 Implementation	subpalette	...	65	

9.2	 Simulation	palette	...	66	

9.2.1	 Estimation	subpalette	...	66	

10	 System	Identification	in	LabVIEW	..	69	

10.1	 Parameter	Estimation	with	Least	Square	Method	(LS)	...	70	

10.2	 System	Identification	using	Sub-space	methods/Black-Box	methods	73	

10.3	 System	Identification	using	Polynomial	Model	Estimation:	ARX/ARMAX	model	
Estimation	...	74	

10.4	 Generate	model	Data	..	75	

10.4.1	 Excitation	signals	...	77	

11	 Overview	of	System	Identification	functions	..	80	

12	 System	Identification	Example	..	85	

	

	

4	

	

Part	I:	Introduction	
	

	

5	

1 Introduction	to	LabVIEW	and	
MathScript	

In	this	Tutorial	we	will	use	LabVIEW	and	some	of	the	add-on	modules	available	for	LabVIEW.	

• LabVIEW	
• LabVIEW	MathScript	RT	Module	
• LabVIEW	Control	Design	and	Simulation	Module	

1.1 LabVIEW	
LabVIEW	(short	for	Laboratory	Virtual	Instrumentation	Engineering	Workbench)	is	a	
platform	and	development	environment	for	a	visual	programming	language	from	National	
Instruments.	The	graphical	language	is	named	"G".	LabVIEW	is	commonly	used	for	data	
acquisition,	instrument	control,	and	industrial	automation.	The	code	files	have	the	extension	
“.vi”,	which	is	an	abbreviation	for	“Virtual	Instrument”.	LabVIEW	offers	lots	of	additional	
Add-ons	and	Toolkits.	

	

For	more	information	about	LabVIEW,	please	goto	my	Blog:	https://www.halvorsen.blog	 	
and	visit	National	Instruments	at	www.ni.com.	

6	 	 	 	 	 	 	 Introduction	to	LabVIEW	and	MathScript	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

1.2 LabVIEW	MathScript	
MathScript	is	a	high-level,	text-	based	programming	language.	MathScript	includes	more	
than	800	built-in	functions	and	the	syntax	is	similar	to	MATLAB.	You	may	also	create	custom-
made	m-file	like	you	do	in	MATLAB.	

MathScript	is	an	add-on	module	to	LabVIEW	but	you	don’t	need	to	know	LabVIEW	
programming	in	order	to	use	MathScript.	

MathScript	is	an	add-on	module	to	LabVIEW	but	you	don’t	need	to	know	LabVIEW	
programming	in	order	to	use	MathScript.	

	

For	more	information	about	MathScript,	please	read	the	Tutorial	“LabVIEW	MathScript”.	

How	do	you	start	using	MathScript?	 	

You	need	to	install	LabVIEW	and	the	LabVIEW	MathScript	RT	Module.	When	necessary	
software	is	installed,	start	MathScript	by	open	LabVIEW.	In	the	Getting	Started	window,	
select	Tools	->	MathScript	Window...:	

	

7	 	 	 	 	 	 	 Introduction	to	LabVIEW	and	MathScript	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

For	more	information	about	MathScript,	please	read	the	Tutorial	“LabVIEW	MathScript”.	

MathScript	Node:	

You	may	also	use	MathScript	Code	directly	inside	and	combined	with	you	graphical	LabVIEW	
code,	for	this	you	use	the	“MathScript	Node”.	With	the	“MathScript	Node”	you	can	combine	
graphical	and	textual	code	within	LabVIEW.	The	figure	below	shows	the	“MathScript	Node”	
on	the	block	diagram,	represented	by	the	blue	rectangle.	Using	“MathScript	Nodes”,	you	can	
enter	.m	file	script	text	directly	or	import	it	from	a	text	file.	

	

You	can	define	named	inputs	and	outputs	on	the	MathScript	Node	border	to	specify	the	data	
to	transfer	between	the	graphical	LabVIEW	environment	and	the	textual	MathScript	code.	

You	can	associate	.m	file	script	variables	with	LabVIEW	graphical	programming,	by	wiring	
Node	inputs	and	outputs.	Then	you	can	transfer	data	between	.m	file	scripts	with	your	
graphical	LabVIEW	programming.	The	textual	.m	file	scripts	can	now	access	features	from	
traditional	LabVIEW	graphical	programming.	

The	MathScript	Node	is	available	from	LabVIEW	from	the	Functions	Palette:	Mathematics	→	
Scripts	&	Formulas	

8	 	 	 	 	 	 	 Introduction	to	LabVIEW	and	MathScript	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

If	you	click	Ctrl	+	H	you	get	help	about	the	MathScript	Node:	

	

Click	“Detailed	help”	in	order	to	get	more	information	about	the	MathScript	Node.	

	

9	

2 LabVIEW	Control	and	Simulation	
Module	

LabVIEW	has	several	additional	modules	and	Toolkits	for	Control	and	Simulation	purposes,	
e.g.,	“LabVIEW	Control	Design	and	Simulation	Module”,	“LabVIEW	PID	and	Fuzzy	Logic	
Toolkit”,	“LabVIEW	System	Identification	Toolkit”	and	“LabVIEW	Simulation	Interface	
Toolkit”.	LabVIEW	MathScript	is	also	useful	for	Control	Design	and	Simulation.	

• LabVIEW	Control	Design	and	Simulation	Module	
• LabVIEW	PID	and	Fuzzy	Logic	Toolkit	
• LabVIEW	System	Identification	Toolkit	
• LabVIEW	Simulation	Interface	Toolkit	

Below	we	see	the	Control	Design	&	Simulation	palette	in	LabVIEW:	

	

In	this	Tutorial	we	will	focus	on	the	VIs	used	for	Parameter	and	State	estimation	and	
especially	the	use	of	Observers	and	Kalman	Filter	for	State	estimation.	

If	you	want	to	learn	more	about	Simulation,	Simulation	Loop,	block	diagrams	and	PID	
control,	etc.,	I	refer	to	the	Tutorial	“Control	and	Simulation	in	LabVIEW”	This	Tutorial	is	
available	from	https://www.halvorsen.blog.	 	

In	this	Tutorial,	we	will	need	the	following	sub	palettes	in	the	Control	Design	and	Simulation	
palette:	

• Control	Design	
• System	Identification	
• Simulation	

Below	we	see	the	Control	Design	palette:	

10	 	 LabVIEW	Control	and	Simulation	Module	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

Below	we	see	the	System	Identification	palette:	

	

	

Below	we	see	the	Simulation	palette:	

	

In	the	next	chapters	we	will	go	in	detail	and	describe	the	different	sub	palettes	in	these	
palettes	and	explain	the	functions/Sub	VIs	we	will	need	for	System	identification	and	
Estimation.	

	

11	

3 Model	Creation	in	LabVIEW	
When	you	have	found	the	mathematical	model	for	your	system,	the	first	step	is	to	define/	or	
create	your	model	in	LabVIEW.	Your	model	can	be	a	Transfer	function	or	a	State-space	
model.	

In	LabVIEW	and	the	“LabVIEW	Control	Design	and	Simulation	Module”	you	can	create	
different	models,	such	as	State-space	models	and	transfer	functions,	etc.	

In	the	Control	Design	palette,	we	have	several	sub	palettes	that	deals	with	models,	these	
are:	

• Model	Construction	
• Model	Information	
• Model	Conversion	
• Model	Interconnection	

	

Below	we	go	through	the	different	subpalettes	and	the	most	used	VIs	in	these	palettes.	

“Model	Construction”	Subpalette:	

In	this	palette	we	have	VIs	for	creating	state-space	models	and	transfer	functions.	

12	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

→	Use	the	Model	Construction	VIs	to	create	linear	system	models	and	modify	the	properties	
of	a	system	model.	You	also	can	use	the	Model	Construction	VIs	to	save	a	system	model	to	a	
file,	read	a	system	model	from	a	file,	or	obtain	a	visual	representation	of	a	model.	

Some	of	the	most	used	VIs	would	be:	

	 CD	Construct	State-Space	Model.vi	

	 CD	Construct	Transfer	Function	Model.vi	

These	VIs	and	some	others	are	explained	below.	

3.1 State-space	Models	
Given	the	following	State-space	model:	

𝑥 = 𝐴𝑥 + 𝐵𝑢	

𝑦 = 𝐶𝑥 + 𝐷𝑢	

In	LabVIEW	we	use	the	“CD	Construct	State-Space	Model.vi”	to	create	a	State-space	model:	

	

13	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

You	may	use	numeric	values	in	the	matrices	A,B,C	and	D	or	symbolic	values	by	selecting	
ether	“Numeric”	or	“Symbolic”:	

Numeric	 	 Symbolic	 	

	 	

	

Example:	Create	State-Space	model	

Block	Diagram:	

	

Front	Panel:	

	

14	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

The	“CD	Draw	State-Space	Equation.vi”	can	be	used	to	see	a	graphical	representation	of	the	
State-space	model.	

Example:	Create	SISO/MIMO	State-Space	models	

SISO	Model	(Single	Input,	Single	Output):	

	

	

	

SIMO	Model	(Single	Input,	Multiple	Output):	

	

	

MISO	Model	(Multiple	Input,	Single	Output):	

	
	

MIMO	Model	(Multiple	Input,	Multiple	Output):	

15	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	
	

[End	of	Example]	

3.2 Transfer	functions	
Given	the	following	Transfer	function:	

𝐻 𝑠 =
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟
𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟

=
𝑏6 + 𝑏7𝑠 + 𝑏8𝑠8 +	⋯
𝑎6 + 𝑎7𝑠 + 𝑎8𝑠8 +	⋯

	

In	LabVIEW	we	use	the	“CD	Construct	Transfer	Function	Model.vi”	to	create	a	Transfer	
Function:	

	

	

Example:	Transfer	Function	

Block	Diagram:	

16	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

Front	Panel:	

	

[End	of	Example]	

	

Example:	Transfer	Function	with	Symbolic	values	

Block	Diagram:

	

Front	Panel:	

17	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

[End	of	Example]	

3.2.1 commonly	used	transfer	functions	

For	commonly	used	transfer	functions	we	can	use	the	“CD	Construct	Special	TF	Model.vi”:	

1.order	system:	

The	transfer	function	for	a	1.	order	system	is	as	follows:	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
𝑒>?@ 	

Where	

𝐾 is	the	gain	

T	is	the	Time	constant	

𝜏	 is	the	Time	delay	

	

Select	the	 	 polymorphic	instance	on	the	“CD	Construct	Special	TF	Model.vi”:	

	

18	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

	

2.order	system:	

The	transfer	function	for	a	2.	order	system	is	as	follows:	

𝐻 𝑠 =
𝐾𝜔68

𝑠8 + 2𝜁𝜔6𝑠 + 𝜔68
=

𝐾
𝑠
𝜔6

8
+ 2𝜁 𝑠

𝜔6
+ 1

	

Where	

• 𝐾 is	the	gain	
• 𝜁	 zeta	is	the	relative	damping	factor	
• 𝜔6[rad/s]	is	the	undamped	resonance	frequency.	

	

Select	the	 	 polymorphic	instance	on	the	“CD	Construct	Special	TF	Model.vi”:	

	

	

	

Time	delay	as	a	Pade’	approximation:	

Time-delays	are	very	common	in	control	systems.	The	Transfer	function	of	a	time-delay	is:	

𝐻 𝑠 = 𝑒>?@ 	

19	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

In	some	situations	it	is	necessary	to	substitute	 𝑒>?@	 with	an	approximation,	e.g.,	the	Padé-
approximation:	

𝑒>?@ ≈
1 − 𝑘7𝑠 + 𝑘8𝑠8 + ⋯	± 𝑘I𝑠I

1 + 𝑘7𝑠 + 𝑘8𝑠8 + ⋯+ 𝑘I𝑠I
	

Select	the	 	 polymorphic	instance	on	the	“CD	Construct	Special	TF	Model.vi”:	

	

	

“Model	Information”	Subpalette:	 	

	

→	Use	the	Model	Information	VIs	to	obtain	or	set	parameters,	data,	and	names	of	a	system	
model.	Model	information	includes	properties	such	as	the	system	delay,	system	dimensions,	
sampling	time,	and	names	of	inputs,	outputs,	and	states.	

	

“Model	Conversion”	Subpalette:	

20	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

→	Use	the	Model	Conversion	VIs	to	convert	a	system	model	from	one	representation	to	
another,	from	a	continuous-time	to	a	discrete-time	model,	or	from	a	discrete-time	to	a	
continuous-time	model.	You	also	can	use	the	Model	Conversion	VIs	to	convert	a	control	
design	model	into	a	simulation	model	or	a	simulation	model	into	a	control	design	model.	

Some	of	the	most	used	VIs	in	the	“Model	Conversion”	subpalette	are:	

	 CD	Convert	to	State-Space	Model.vi	

	 CD	Convert	to	Transfer	Function	Model.vi	

	 CD	Convert	Continuous	to	Discrete.vi	

These	VIs	and	some	others	are	explained	below.	

Convert	to	State-Space	Models:	

	

	

Example:	Convert	from	Transfer	function	to	State-Space	model	

Block	Diagram:	

21	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

Front	Panel:	

	

[End	of	Example]	

Convert	to	Transfer	Functions:	

	

	

	

Example:	Convert	from	State-Space	model	to	Transfer	Function	

Block	Diagram:	

	

Front	Panel:	

22	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

[End	of	Example]	

Convert	Continuous	to	Discrete	Model:	

	

	

Example:	Convert	from	Continuous	State-Space	model	to	Discrete	State-Space	model	

Block	Diagram:	

	

Front	Panel:	

23	 	 Model	Creation	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

[End	of	Example]	

	

“Model	Interconnection”	Subpalette:	

	

→	Use	the	Model	Interconnection	VIs	to	perform	different	types	of	linear	system	
interconnections.	You	can	build	a	large	system	model	by	connecting	smaller	system	models	
together.	

	

	

	

	

24	

4 Introduction	to	System	
Identification	and	Estimation	

This	Tutorial	will	go	through	the	basic	principles	of	System	identification	and	Estimation	and	
how	to	implement	these	techniques	in	LabVIEW.	

The	following	methods	will	be	discussed	in	the	next	chapters:	

State	Estimation:	

• Kalman	Filter	
• Observers	

System	Identification:	

• Parameter	Estimation	and	the	Least	Square	Method	(LS)	
• Sub-space	methods/Black-Box	methods	
• Polynomial	Model	Estimation:	ARX/ARMAX	model	Estimation	

The	next	chapters	will	go	through	the	basic	theory	and	show	how	it	could	be	implemented	in	
LabVIEW	and	MathScript.	

	

	

25	

	

Part	II:	Estimation	
	

	

26	

5 State	Estimation	with	Kalman	Filter	
Kalman	Filter	is	a	commonly	used	method	to	estimate	the	values	of	state	variables	of	a	
dynamic	system	that	is	excited	by	stochastic	(random)	disturbances	and	stochastic	(random)	
measurement	noise.	

The	Kalman	Filter	is	a	state	estimator	which	produces	an	optimal	estimate	in	the	sense	that	
the	mean	value	of	the	sum	of	the	estimation	errors	gets	a	minimal	value.	

Below	we	see	a	sketch	of	how	a	Kalman	Filter	is	working:	

	

The	estimator	(model	of	the	system)	runs	in	parallel	with	the	system	(real	system	or	model).	
The	measurement(s)	is	used	to	update	the	estimator.	

LabVIEW	Control	Design	and	Simulation	Module	have	lots	of	functionality	for	State	
Estimation	using	Kalman	Filters.	The	functionality	will	be	explained	in	detail	in	the	next	
chapters.	

Below	we	see	the	Discrete	Kalman	Filter	implementation	in	LabVIEW:	

	

	

	

The	Kalman	Filter	for	nonlinear	models	is	called	the	“Extended	Kalman	Filter”.	

27	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

5.1 State-Space	model	
Given	the	continuous	linear	state	space-model:	

𝑥 = 𝐴𝑥 + 𝐵𝑢	

𝑦 = 𝐶𝑥 + 𝐷𝑢	

Or	given	the	discrete	linear	state	space-model	

𝑥JK7 = 𝐴𝑥J + 𝐵𝑢J	

𝑦J = 𝐶𝑥J + 𝐷𝑢J	

LabVIEW:	

In	LabVIEW	we	may	use	the	“CD	Construct	State-Space	Model.vi”	to	create	a	State-space	
model:	

	

	

Note!	If	you	specify	a	discrete	State-space	model	you	have	to	specify	the	Sampling	Time.	 	

LabVIEW	Example:	Create	a	State-space	model	

Block	Diagram:	

	

The	matrices	𝐴,	 𝐵,	 𝐶	 and	 𝐷	 may	be	defined	on	the	Front	Panel	like	this:	

28	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

[End	of	Example]	

Discretization:	

If	you	have	a	continuous	model	and	want	to	convert	it	to	the	discrete	model,	you	may	use	
the	VI	“CD	Convert	Continuous	to	Discrete.vi”	in	LabVIEW:	

	

LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	Control	Design	→	Model	
Conversion	→	CD	Convert	Continuous	to	Discrete.vi	

LabVIEW	Example:	Convert	from	Continuous	to	Discrete	model	

	

Note!	We	have	to	specify	the	Sampling	Time.	

[End	of	Example]	

	

MathScript:	

Use	the	ss	function	in	MathScript	to	define	your	model	(or	tf	if	you	have	a	transfer	function).	
Use	the	c_to_d	function	to	convert	a	continuous	model	to	a	discrete	model.	

MathScript	Example:	

29	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

Given	the	following	State-space	model:	

𝑥7
𝑥8

=
0 1

−
𝑘
𝑚

−
𝑐
𝑚

N

𝑥7
𝑥8 +

0
1
𝑚
O

𝑢	

𝑦 = 1 0
P

𝑥7
𝑥8 	

The	following	MathScript	Code	creates	this	model:	

c=1;
m=1;
k=1;
A = [0 1; -k/m -c/m];
B = [0; 1/m];
C = [1 0];
ssmodel = ss(A, B, C)

If	you	want	to	find	the	discrete	model	use	the	c_to_d	function:	

Ts=0.1 % Sampling Time
discretemodel = c_to_d(ssmodel, Ts)

[End	of	Example]	

5.2 Observability	
A	necessary	condition	for	the	Kalman	Filter	to	work	correctly	is	that	the	system	for	which	the	
states	are	to	be	estimated,	is	observable.	Therefore,	you	should	check	for	Observability	
before	applying	the	Kalman	Filter.	

The	Observability	matrix	is	defined	as:	

𝑂 =
𝐶
𝐶𝐴
⋮

𝐶𝐴I>7
	

Where	n	is	the	system	order	(number	of	states	in	the	State-space	model).	

→	A	system	of	order	n	is	observable	if	 𝑶	 is	full	rank,	meaning	the	rank	of	 𝑶	 is	equal	to	
n.	

LabVIEW:	

The	LabVIEW	Control	Design	and	Simulation	Module	have	a	VI	(Observability	Matrix.vi)	for	
finding	the	Observability	matrix	and	check	if	a	states-pace	model	is	Observable.	

30	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	Control	Design	→	State-Space	
Model	Analysis	→	CD	Observability	Matrix.vi	

	

	

Note!	In	LabVIEW	 𝑁	 is	used	as	a	symbol	for	the	Observability	matrix.	

	

LabVIEW	Example:	Check	for	Observability	

	

[End	of	Example]	

	

MathScript:	

In	MathScript	you	may	use	the	obsvmx	function	to	find	the	Observability	matrix.	You	may	
then	use	the	rank	function	in	order	to	find	the	rank	of	the	Observability	matrix.	

MathScript	Example:	

The	following	MathScript	Code	check	for	Observability:	

% Check for Observability:
O = obsvmx (discretemodel)
r = rank(O)

[End	of	Example]	

5.3 Introduction	to	the	State	Estimator	
Continuous	Model:	

31	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

Given	the	continuous	linear	state	space	model:	

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐺𝑤	

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝐻𝑣	

or	in	general:	

𝑥 = 𝑓(𝑥, 𝑢) + 𝐺𝑤	

𝑦 = 𝑔(𝑥, 𝑢) + 𝐻𝑣	

Discrete	Model:	

Given	the	discrete	linear	state	space	model:	

𝑥JK7 = 𝐴𝑥J + 𝐵𝑢J + 𝐺𝑤J	

𝑦J = 𝐶𝑥J + 𝐷𝑢J + 𝐻𝑣J	

or	in	general:	

𝑥JK7 = 𝑓(𝑥J, 𝑢J) + 𝐺𝑤J	

𝑦J = 𝑔(𝑥J, 𝑢J) + 𝐻𝑣J	

	

Where	 𝑣	 is	uncorrelated	white	process	noise	with	zero	mean	and	covariance	matrix	 𝑄	 and	
w	is	uncorrelated	white	measurements	noise	with	zero	mean	and	covariance	matrix,	i.e.	
such	that	

𝑄 = 𝐸{𝑤𝑤`}	

𝑅 = 𝐸{𝑣𝑣`}	

𝐸{𝑤}	 is	the	expected	value	or	mean	of	the	process	noise	vector.	 	

𝐸{𝑣}	is	the	expected	value	or	mean	of	the	measurement	noise	vector.	 	

It	is	normal	to	let	 𝑄	 and	 𝑅	 be	diagonal	matrices:	

𝑄 =

𝑞77 0 0 0
0 𝑞88 0 0
0 0 ⋱ 0
0 0 0 𝑞II

, 𝑅 =

𝑟77 0 0 0
0 𝑟88 0 0
0 0 ⋱ 0
0 0 0 𝑟ee

	

	

𝐺	 is	the	process	noise	gain	matrix,	and	you	normally	set	 𝐺	 equal	to	the	Identity	matrix	 𝐼:	

32	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

𝐺 =

1 0 0 0
0 1 0 0
0 0 ⋱ 0
0 0 0 1

	

𝐻	 is	the	measurement	noise	gain	matrix,	and	you	normally	set	 𝐻 = 0	

	

State	Estimator:	

The	state	estimator	is	given	by:	

𝑥JK7 = 𝐴𝑥J + 𝐵𝑢J + 𝐾(𝑦 − 𝑦)	

𝑦J = 𝐶𝑥J	

Where	 𝐾	 is	the	Kalman	Filter	Gain	

It	can	be	found	that:	

𝐾 = 𝑋𝐶`𝑄>7	

Where	 𝑋	 is	the	solution	to	the	Riccati	equation.	It	is	common	to	use	the	steady	state	
solution	of	the	Riccati	equation	(Algebraic	Riccati	Equation),	i.e.,	 𝑋 = 0.	

Note!	 𝑄	 and	 𝑅	 is	used	as	tuning/weighting	matrices	when	designing	the	Kalman	Filter	
Gain	 𝐾.	

Below	we	see	a	Block	Diagram	of	a	(discrete)	Kalman	Filter/State	Estimator:	

	

33	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

LabVIEW:	

In	LabVIEW	Design	and	Simulation	Module	we	use	the	“CD	Kalman	Gain.vi”	in	order	to	find	
K:	

LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	Control	Design	→	State	Feedback	
Design	→	CD	Kalman	Gain.vi	 	

	

	

Note!	In	LabVIEW	 𝐿	 is	used	as	a	symbol	for	the	Kalman	Filter	Gain	matrix.	

Note!	The	“Kalman	Filter	Gain.vi”	is	polymorphic,	depending	on	what	kind	of	model	
(deterministic/stochastic	or	continuous/discrete)	you	wire	to	this	VI,	the	inputs	changes	
automatically	or	you	may	use	the	polymorphic	selector	below	the	VI:	

	

Deterministic	and	Continuous:	

	

Stochastic	and	Continuous:	

	

Deterministic	and	Discrete:	

	

Stochastic	and	Discrete:	

	

34	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

LabVIEW	Example:	Find	the	Kalman	Gain	

Block	Diagram:	

	

Front	Panel:	

	

[End	of	Example]	

	

MathScript:	

Use	the	functions	kalman,	kalman_d	or	lqe	to	find	the	Kalman	gain	matrix.	

Function	 Description	 Example	

kalman	 Calculates	the	optimal	steady-state	Kalman	
gain	K	that	minimizes	the	covariance	of	the	
state	estimation	error.	You	can	use	this	
function	to	calculate	K	for	continuous	and	
discrete	system	models.	

>>[SysKal, K]=kalman(ssmodel, Q, R)

35	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

kalman_d	 Calculates	the	optimal	steady-state	Kalman	
gain	K	that	minimizes	the	covariance	of	the	
state	estimation	error.	The	input	system	and	
noise	covariance	are	based	on	a	continuous	
system.	All	outputs	are	based	on	a	
discretized	system,	which	is	based	on	the	
sample	rate	Ts.	

[SysKalDisc, K]=kalman_d(ssmodel, Q,
R, Ts)

lqe	 Calculates	the	optimal	steady-state	
estimator	gain	matrix	K	for	a	continuous	
state-space	model	defined	by	matrices	A	
and	C.	

K=lqe(A,G,C,Q,R)

	

MathScript	Example:	Find	Kalman	Gain	using	the	Kalman	function	

MathScript	Code	for	finding	the	steady	state	Kalman	Gain:	

% Define the State-space model:
c=1;
m=1;
k=1;
A = [0 1; -k/m -c/m];
B = [0; 1/m];
C = [1 0];
ssmodel = ss(A, B, C);
% Discrete model:
Ts=0.1; % Sampling Time
discretemodel = c_to_d(ssmodel, Ts);
% Check for Observability:
O = obsvmx(discretemodel);
r = rank(O);
% Find Kalman Gain
Q=[0.01 0; 0 0.01];
R=[0.01];
[SysKal, K]=kalman(discretemodel, Q, R);
K

The	Output	is:	

K =
 0.64435
 0.10759

[End	of	Example]	

	

MathScript	Example:	Find	Kalman	Gain	using	the	Kalman	function	

36	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

MathScript	Code	for	finding	the	steady	state	Kalman	Gain:	

% Define the State-space model:
c=1;
m=1;
k=1;
A = [0 1; -k/m -c/m];
B = [0; 1/m];
G=[1 0 ; 0 1];
C = [1 0];

% Find Kalman Gain
Q=[0.01 0; 0 0.01];
R=[0.01];

K=lqe(A,G,C,Q,R)

The	Output	is:	

K =
 0.86121
 -0.12916

[End	of	Example]	

5.4 State	Estimation	
LabVIEW	Control	Design	and	Simulation	Module	have	built-in	functionality	for	State	
Estimation	using	the	Kalman	Filter.	

In	the	next	section	we	will	create	our	own	Kalman	Filter	State	Estimation	algorithm.	

LabVIEW:	

There	are	different	functions	and	VIs	for	finding	the	State	Estimation	using	the	Kalman	Filter.	

CD	State	Estimator.vi:	

LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	Control	Design	→	State	Feedback	
Design	→	CD	State	Estimator.vi	 	

	

37	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

Below	we	show	an	example	of	how	to	use	the	CD	State	Estimator.vi	in	LabVIEW.	

LabVIEW	Example:	State	Estimator	Simulation	

Given	the	following	model:	

𝑥7
𝑥8

= −0.2 0.5
0 −0.1

N

𝑥7
𝑥8 + 0

1
O

𝑢	

𝑦 = 1 0
P

𝑥7
𝑥8 + 0

k
𝑢	

We	will	use	the	“CD	State	Estimator.vi”	in	LabVIEW.	

Block	Diagram	becomes	as	follows:	

	

Note!	We	have	used	“CD	Initial	Response.vi”	for	plotting	the	response.	The	VI	is	located	in	
the	LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	Control	Design	→	Time	
Response	→	CD	Initial	Response.vi	 	

The	result	becomes	as	follows:	

38	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

We	see	the	estimates	are	good.	

MathScript:	

In	MathScript	we	may	use	the	built-in	estimator	function.	

	

5.5 LabVIEW	Kalman	Filter	Implementations	
LabVIEW	Design	and	Simulation	Module	have	several	built-in	versions	of	the	Kalman	Filter;	
here	we	will	investigate	some	of	them.	

The	Control	Design	→	Implementation	palette	in	LabVIEW:	

	
	

Here	we	have	the	“CD	Discrete	Kalman	Filter”.	

Simulation	→	Estimation	palette	in	LabVIEW:	

39	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

	

Here	we	have	implementations	for:	

• Continuous	Kalman	Filter	
• Continuous	Extended	Kalman	Filter	
• Discrete	Kalman	Filter	
• Discrete	Extended	Kalman	Filter	

We	will	go	through	the	“Discrete	Kalman	Filter”	in	detail	and	show	some	examples.	

Discrete	Kalman	Filter:	

LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	Simulation	→	Estimation	→	
Discrete	Kalman	Filter	

	

	

By	default	you	need	to	wire	the	input	(𝑢)	and	output	(𝑦)	vectors:	

40	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

In	order	to	Configure	the	block	you	right-click	on	it	and	select	“Configuration…”	

	

In	the	Configuration	window	you	can	enter	your	model	parameters:	

41	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

If	you	select	“Terminal”	in	the	“Parameter	source”	you	may	create	your	model	in	LabVIEW	
code	like	this:	

	

	

LabVIEW	Example:	Discrete	Kalman	Filter	

Given	the	following	linear	state-space	model	of	a	water	tank:	

𝑥7
𝑥8

= 0 −10
0 0

N

𝑥7
𝑥8 + 0.02

0
O

𝑢	

42	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

𝑦 = 1 0
P

𝑥7
𝑥8 + 0

k
𝑢	

Where	 𝑥7	 is	the	level	in	the	tank,	while	 𝑥8	 is	the	outflow	of	the	tank.	Only	the	level	 𝑥7	 is	
measured.	

Step	1:	First	we	create	the	model:	

	

Where	A,	B,	D	and	D	is	defined	according	to	the	state-space	model	above:	

	

Note!	The	Discrete	Kalman	Filter	function	in	LabVIEW	requires	a	stochastic	state-space	
model,	so	we	have	to	create	a	stochastic	state-space	model	or	convert	our	state-space	
model	into	a	stochastic	state-space	model	as	done	in	the	LabVIEW	code	above.	

Step	2:	Then	we	use	the	Discrete	Kalman	Filter	function	in	LabVIEW	on	our	model:	

43	 	 State	Estimation	with	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

The	Discrete	Kalman	Filter	function	also	requires	a	Noise	model,	so	we	create	a	noise	model	
from	our	 𝑄	 and	 𝑅	 matrices	as	done	in	the	LabVIEW	code	above.	

The	results	are	as	follows:	

	 	

We	see	the	result	is	very	good.	

[End	of	Example]	

	

44	

6 Create	your	own	Kalman	Filter	
from	Scratch	

In	this	chapter	we	will	create	our	own	Kalman	Filter	Algorithm	from	scratch.	

6.1 The	Kalman	Filter	Algorithm	
LabVIEW	Design	and	Simulation	Module	have	several	built-in	versions	of	the	Kalman	Filter,	
but	in	this	chapter	we	will	create	our	own	Kalman	Filter	algorithm.	

Here	is	a	step	by	step	Kalman	Filter	algorithm	which	can	be	directly	implemented	in	a	
programming	language,	such	as	LabVIEW.	You	may,	e.g.,	implement	it	in	standard	LabVIEW	
code	or	a	Formula	Node	in	LabVIEW.	

Pre	Step:	Find	the	steady	state	Kalman	Gain	K	

K	is	time-varying,	but	you	normally	implement	the	steady	state	version	of	Kalman	Gain	K.	
Use	the	“CD	Kalman	Gain.vi”	in	LabVIEW	or	one	of	the	functions	kalman,	kalman_d	or	lqe	in	
MathScript.	

Init	Step:	Set	the	initial	Apriori	(Predicted)	state	estimate	

𝑥6 = 𝑥6	

Step	1:	Find	Measurement	model	update	

𝑦J = 𝑔(𝑥J, 𝑢J)	

For	Linear	State-space	model:	

𝑦J = 𝐶𝑥J + 𝐷𝑢J	

Step	2:	Find	the	Estimator	Error	

𝑒J = 𝑦J − 𝑦J	

Step	3:	Find	the	Aposteriori	(Corrected)	state	estimate	

𝑥J = 𝑥J + 𝐾𝑒J	

Where	K	is	the	Kalman	Filter	Gain.	Use	the	steady	state	Kalman	Gain	or	calculate	the	time-
varying	Kalman	Gain.	

Step	4:	Find	the	Apriori	(Predicted)	state	estimate	update	 	

𝑥JK7 = 𝑓(𝑥J, 𝑢J)	

45	 	 Create	your	own	Kalman	Filter	from	Scratch	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

For	Linear	State-space	model:	

𝑥JK7 = 𝐴𝑥J + 𝐵𝑢J	

Step	1-4	goes	inside	a	loop	in	your	program.	

This	is	the	algorithm	we	will	implement	in	the	example	below.	

	

6.2 Examples	
LabVIEW	Example:	Kalman	Filter	algorithm	

Given	the	following	linear	state-space	model	of	a	water	tank:	

𝑥7
𝑥8

= 0 −10
0 0

N

𝑥7
𝑥8 + 0.02

0
O

𝑢	

𝑦 = 1 0
P

𝑥7
𝑥8 + 0

k
𝑢	

Where	 𝑥7	 is	the	level	in	the	tank,	while	 𝑥8	 is	the	outflow	of	the	tank.	Only	the	level	 𝑥7	 is	
measured.	

First	we	have	to	find	the	steady	state	Kalman	Filter	Gain	and	check	for	Observability:	

	

Then	we	run	the	real	process	(or	simulated	model)	in	parallel	with	the	Kalman	Filter	in	order	
to	find	estimates	for	 𝑥7	 and	 𝑥8:	

46	 	 Create	your	own	Kalman	Filter	from	Scratch	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

In	this	case	we	have	used	a	Simulation	Loop,	but	a	While	Loop	will	do	the	same.	

Blocks/SubVIs:	

Real	process/Simulated	process:	

	 	Here	we	either	have	a	model	of	the	system	or	read/write	data	from	the	real	process	
using	a	DAQ	card,	e.g.,	USB-6008	from	National	Instruments.	

Implementation	of	the	Kalman	Filter	Algorithm:	

	

	

The	Block	Diagram	is	as	follows:	

47	 	 Create	your	own	Kalman	Filter	from	Scratch	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

This	is	a	general	implementation	and	will	work	for	all	linear	discrete	systems.	

The	results	are	as	follows:	

	

48	 	 Create	your	own	Kalman	Filter	from	Scratch	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

[End	of	Example]	

	

49	

7 Overview	of	Kalman	Filter	VIs	
In	LabVIEW	there	are	several	VIs	and	functions	used	for	Kalman	Filter	implementations.	

7.1 Control	Design	Palette	
In	the	“Control	Design”	palette	we	find	subpalettes	for	“State	Feedback	Design”	and	
“Implementation”:	

	

	

7.1.1 State	Feedback	Design	subpalette	

In	the	“State	Feedback	Design”	subpalette	we	find	VIs	for	calculation	the	Kalman	Gain,	etc.	

	

→	Use	the	State	Feedback	Design	VIs	to	calculate	controller	and	observer	gains	for	closed-
loop	state	feedback	control	or	to	estimate	a	state-space	model.	You	also	can	use	State	

50	 	 Overview	of	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

Feedback	Design	VIs	to	configure	and	test	state-space	controllers	and	state	estimators	in	
time	domains.	

Kalman	Filter	Gain	VI:	

	

	

7.1.2 Implementation	subpalette	

In	the	“Implementation”	subpalette	we	find	VIs	for	implementing	a	discrete	Observer	and	a	
discrete	Kalman	Filter.	

	

→	Use	the	Implementation	VIs	and	functions	to	simulate	the	dynamic	response	of	a	discrete	
system	model,	deploy	a	discrete	model	to	a	real-time	target,	implement	a	discrete	Kalman	
filter,	and	implement	current	and	predictive	observers.	

Discrete	Kalman	Filter:	

	

51	 	 Overview	of	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

7.2 Simulation	Palette	
In	the	“Simulation”	palette	we	find	the	“Estimation“	subpalette:	

	

7.2.1 Estimation	subpalette	

In	the	“Estimation”	palette	we	find	VIs	for	implementing	a	continuous/discrete	Kalman	
Filter.	

52	 	 Overview	of	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

→	Use	the	Estimation	functions	to	estimate	the	states	of	a	state-space	system.	The	state-
space	system	can	be	deterministic	or	stochastic,	continuous	or	discrete,	linear	or	nonlinear,	
and	completely	or	partially	observable.	

	

	

Continuous	Kalman	Filter	VIs:	

	

	

	

53	 	 Overview	of	Kalman	Filter	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

Discrete	Kalman	Filter	VIs:	

	

	

	

	

	

	

	

	

	

54	

8 State	Estimation	with	Observers	in	
LabVIEW	

Observers	are	an	alternative	to	the	Kalman	Filter.	An	Observer	is	an	algorithm	for	estimating	
the	state	variables	in	a	system	based	on	a	model	of	the	system.	Observers	have	the	same	
structure	as	a	Kalman	Filter.	

In	Observers	you	specify	how	fast	and	stable	you	want	the	estimates	to	converge	to	the	real	
values,	i.e.,	you	specify	the	eigenvalues	of	the	system.	Based	on	the	eigenvalues	you	will	find	
the	Observer	gain	K	that	is	used	to	update	the	estimates.	

One	simple	way	to	find	the	eigenvalues	is	to	use	the	Butterworth	eigenvalues	from	the	
Butterworth	polynomial.	When	we	have	found	the	eigenvalues	we	can	then	use	the	
Ackerman	in	order	to	find	the	Observer	gain.	

	

	

LabVIEW	Control	Design	and	Simulation	Module	have	lots	of	functionality	for	State	
Estimation	using	Observers.	The	functionality	will	be	explained	in	detail	in	the	next	chapters.	

8.1 State-Space	model	
Given	the	continuous	linear	state	space-model:	

𝑥 = 𝐴𝑥 + 𝐵𝑢	

𝑦 = 𝐶𝑥 + 𝐷𝑢	

Or	given	the	discrete	linear	state	space-model	

𝑥JK7 = 𝐴𝑥J + 𝐵𝑢J	

𝑦J = 𝐶𝑥J + 𝐷𝑢J	

55	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

LabVIEW:	

In	LabVIEW	we	may	use	the	“CD	Construct	State-Space	Model.vi”	to	create	a	State-space	
model:	

	

	

Note!	If	you	specify	a	discrete	State-space	model	you	have	to	specify	the	Sampling	Time.	 	

LabVIEW	Example:	Create	a	State-space	model	

Block	Diagram:	

	

The	matrices	𝐴,	 𝐵,	 𝐶	 and	 𝐷	 may	be	defined	on	the	Front	Panel	like	this:	

	

[End	of	Example]	

56	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

8.2 Eigenvalues	
One	simple	way	to	find	the	eigenvalues	is	to	use	the	Butterworth	eigenvalues	from	the	
Butterworth	polynomial.	

Butterwort	Polynomial:	

The	Butterworth	Polynomial	is	defined	as:	

𝐵I 𝑠 = 𝑎I𝑠I +	…	+ 𝑎8𝑠8 + 𝑎7𝑠 + 1	

where	 𝑎6 = 1, 𝑎7, 𝑎8, … , 𝑎I	 are	the	coefficients	in	the	Butterworth	Polynomial.	 	

Here	we	will	use	a	2.order	Butterworth	Polynomial,	which	is	defined	as:	

𝐵8 𝑠 = 𝑎8𝑠8 + 𝑎7𝑠 + 1	

where	 𝑎6 = 1, 𝑎7 = 2𝑇, 𝑎8 = 𝑇8.	 	

This	gives:	

𝐵8 𝑠 = 𝑇8𝑠8 + 2𝑇𝑠 + 1 	

where	the	parameter	 𝑇	 is	used	to	defined	the	speed	of	the	response	according	to:	

𝑇e ≈ 𝑛𝑇 	

where	 𝑇e 	 is	defined	as	the	Observer	response	time	where	the	step	response	reach	63%	of	
the	steady	state	value	of	the	response.	

→	So	we	will	use	 𝑇e 	 as	the	tuning	parameter	for	the	Observer.	

	

LabVIEW:	

In	LabVIEW	we	can	use	the	“Polynomial	Roots.vi”	to	find	the	roots	based	on	the	
Butterworth	Polynomial	

LabVIEW	Functions	Palette:	Mathematics	→	Polynomial	→	Polynomial	Roots.vi	 	

	

57	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

Below	we	see	the	Mathematics	and	the	Polynomial	palettes	in	LabVIEW.	

	 	

MathScript:	

In	MathScript	we	can	use	the	roots	function	in	order	to	find	the	eigenvalues	based	on	a	
given	polynomial.	

8.3 Observer	Gain	
LabVIEW:	

In	LabVIEW	we	can	use	the	“CD	Ackerman.vi”	to	find	the	Observer	gain	based	on	some	given	
eigenvalues	(found	from	the	Butterwort	Polynomial).	

LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	Control	Design	→	State	Feedback	
Design	→	CD	Ackerman.vi	 	

	

58	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

MathScript:	

In	MathScript	we	can	use	the	acker	function	in	order	to	find	the	Observer	gain	based	on	
some	given	eigenvalues	(found	from	the	Butterwort	Polynomial).	

8.4 Observability	
A	necessary	condition	for	the	Observer	to	work	correctly	is	that	the	system	for	which	the	
states	are	to	be	estimated,	is	observable.	Therefore,	you	should	check	for	Observability	
before	applying	the	Observer.	

The	Observability	matrix	is	defined	as:	

𝑂 =
𝐶
𝐶𝐴
⋮

𝐶𝐴I>7
	

Where	n	is	the	system	order	(number	of	states	in	the	State-space	model).	

→	A	system	of	order	n	is	observable	if	 𝑶	 is	full	rank,	meaning	the	rank	of	 𝑶	 is	equal	to	
n.	

LabVIEW:	

The	LabVIEW	Control	Design	and	Simulation	Module	have	a	VI	(Observability	Matrix.vi)	for	
finding	the	Observability	matrix	and	check	if	a	states-pace	model	is	Observable.	

LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	Control	Design	→	State-Space	
Model	Analysis	→	CD	Observability	Matrix.vi	

	

	

59	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

Note!	In	LabVIEW	 𝑁	 is	used	as	a	symbol	for	the	Observability	matrix.	

	

LabVIEW	Example:	Check	for	Observability	

	

[End	of	Example]	

	

MathScript:	

In	MathScript	you	may	use	the	obsvmx	function	to	find	the	Observability	matrix.	You	may	
then	use	the	rank	function	in	order	to	find	the	rank	of	the	Observability	matrix.	

MathScript	Example:	

The	following	MathScript	Code	check	for	Observability:	

% Check for Observability:
O = obsvmx (discretemodel)
r = rank(O)

[End	of	Example]	

8.5 Examples	
Here	we	will	show	implementations	of	an	Observer	in	LabVIEW	and	MathScript.	

Given	the	following	linear	state-space	model	of	a	water	tank:	

𝑥7
𝑥8

= 0 −10
0 0

N

𝑥7
𝑥8 + 0.02

0
O

𝑢	

𝑦 = 1 0
P

𝑥7
𝑥8 + 0

k
𝑢	

Where	 𝑥7	 is	the	level	in	the	tank,	while	 𝑥8	 is	the	outflow	of	the	tank.	Only	the	level	 𝑥7	 is	
measured.	

60	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

LabVIEW	Example:	Observer	Gain	

Below	we	see	the	Block	Diagram	in	LabVIEW	for	calculating	the	Observer	gain:	

	

We	used	the	“Polynomial	Roots.vi”	in	order	to	find	the	poles	as	specified	in	the	Butterworth	
Polynomial.	

We	use	a	2.order	Butterworth	Polynomial:	

𝐵8 𝑠 = 𝑇8𝑠8 + 2𝑇𝑠 + 1 	

where	the	parameter	 𝑇	 is	used	to	defined	the	speed	of	the	response	according	to:	

𝑇e ≈ 𝑛𝑇 ↔ 𝑇 =
𝑇e
𝑛
	

In	the	example	we	set	 𝑇e = 2𝑠	 and	 𝑛 = 2	 in	the	example.	

This	gives:	

𝐵8 𝑠 = 𝑠8 + 1.41𝑠 + 1	

So	the	coefficients	in	the	polynomial	are	as	follows:	

	

Then	we	have	used	the	“CD	Akerman.vi”	to	find	the	Observer	gain.	

The	result	becomes:	

61	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

[End	of	Example]	

	

LabVIEW	Example:	Observer	Estimator	

LabVIEW	have	several	built-in	Observer	functions,	e.g.,	the	“CD	Continuous	Observer.vi”	we	
will	use	in	this	example.	Below	we	see	the	Block	Diagram	for	the	Observer:	

	

The	result	is	as	follows:	

62	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

[End	of	Example]	

	

MathScript	Example:	Observer	Gain	

Here	we	will	use	MathScript	in	order	to	find	the	Observer	gain	for	the	same	system	as	above.	

The	Code	is	as	follows:	

% Define the State-space model:
A = [0 -10; 0 0];
B = [0.02; 0];
C = [1 0];
D=[0];
ssmodel = ss(A, B, C,D);
% Check for Observability:
O = obsvmx (ssmodel);
r = rank(O);
%Butterwort Polynomial:
B2=[1, 1.41, 1];
p=roots(B2);
% Find Observer Gain
K = ackermann(ssmodel, p, 'L')

The	result	is:	

63	 	 State	Estimation	with	Observers	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

K = 1.41
 -0.1

[End	of	Example]	

	

	

	

	

64	

9 Overview	of	Observer	functions	
Observers	are	very	similar	to	Kalman	filters.	In	observers	the	estimator	gain	is	calculated	
from	specified	eigenvalues	or	poles	of	the	estimator	error	dynamics	(in	other	words:	how	
fast	you	want	the	estimation	error	to	converge	to	real	states).	

In	LabVIEW	there	are	several	VIs	and	functions	used	for	Observer	implementations.	

9.1 Control	Design	palette	
In	the	“Control	Design”	palette	we	find	subpalettes	for	“State	Feedback	Design”	and	
“Implementation”:	

	

	

9.1.1 State	Feedback	Design	subpalette	

In	the	“State	Feedback	Design”	subpalette	we	find	VIs	for	calculation	the	Observer	Gain,	etc.	

	

65	 	 Overview	of	Observer	functions	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

→	Use	the	State	Feedback	Design	VIs	to	calculate	controller	and	observer	gains	for	closed-
loop	state	feedback	control	or	to	estimate	a	state-space	model.	You	also	can	use	State	
Feedback	Design	VIs	to	configure	and	test	state-space	controllers	and	state	estimators	in	
time	domains.	

Ackermann	VI:	

	

	

9.1.2 Implementation	subpalette	

In	the	“Implementation”	subpalette	we	find	VIs	for	implementing	a	discrete	Observer	and	a	
discrete	Kalman	Filter.	

	

→	Use	the	Implementation	VIs	and	functions	to	simulate	the	dynamic	response	of	a	discrete	
system	model,	deploy	a	discrete	model	to	a	real-time	target,	implement	a	discrete	Kalman	
filter,	and	implement	current	and	predictive	observers.	

Discrete	Observer:	

	

66	 	 Overview	of	Observer	functions	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

9.2 Simulation	palette	
In	the	“Simulation”	palette	we	find	the	“Estimation“	sub-palette:	

	

9.2.1 Estimation	subpalette	

In	the	“Estimation”	palette	we	find	VIs	for	implementing	continuous/discrete	Observers	and	
Kalman	Filter.	

	

67	 	 Overview	of	Observer	functions	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

→	Use	the	Estimation	functions	to	estimate	the	states	of	a	state-space	system.	The	state-
space	system	can	be	deterministic	or	stochastic,	continuous	or	discrete,	linear	or	nonlinear,	
and	completely	or	partially	observable.	

Continuous	Observer	VI:	

	

	

Discrete	Observer	VI:	

	

	

	

	

68	

	

	

Part	III:	System	Identification	
	

	

69	

10 System	Identification	in	LabVIEW	
The	model	can	be	in	form	of	differential	equations	developed	from	physical	principles	or	
from	transfer	function	models,	which	can	be	regarded	as	“black-box”-models	which	
expresses	the	input-output	property	of	the	system.	Some	of	the	parameters	of	the	model	
can	have	unknown	or	uncertain	values,	for	example	a	heat	transfer	coefficient	in	a	thermal	
process	or	the	time-constant	in	a	transfer	function	model.	We	can	try	to	estimate	such	
parameters	from	measurements	taken	during	experiments	on	the	system.	

Here	we	will	discuss:	

• Parameter	Estimation	and	the	Least	Square	Method	(LS)	
• Sub-space	methods/Black-Box	methods	
• Polynomial	Model	Estimation:	ARX/ARMAX	model	Estimation	

In	LabVIEW	we	can	use	the	“System	Identification	Palette”.	

	

The	“System	Identification”	palette	in	LabVIEW:	

	

In	the	next	chapters	we	will	use	the	different	functionality	available	in	the	System	
Identification	Toolkit.	

70	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

10.1 Parameter	Estimation	with	Least	Square	
Method	(LS)	

Parameter	Estimation	using	the	Least	Square	Method	(LS)	is	used	to	find	a	model	with	
unknown	physical	parameters	in	a	mathematical	model.	

The	Least	square	method	can	be	written	as:	

𝑌 = Φ𝜃 	

Where	

𝜽	 is	the	unknown	parameter	vector	

𝑌	 is	the	known	measurement	vector	

Φ	 is	the	known	regression	matrix	

The	solution	for	 𝜃	 may	be	found	as:	

𝜃 = Φ>7𝑌	

It	can	be	found	that	the	least	square	solution	for	 𝑌 = Φ𝑌	 is:	

𝜃st = (ΦuΦ)>7ΦuY 	

Implementation	in	MathScript/MATLAB:	

theta=inv(phi’*phi)* phi’*Y

or	simply:	

theta=phi\Y

	

In	LabVIEW	we	can	use	the	blocks	(“AxB.vi”,	“Transpose	Matrix.vi”,	“Inverse	Matrix.vi”)	in	
the	“Linear	Algebra”	(located	in	the	Mathematics	palette)	palette	in	order	to	fin	the	Least	
Square	solution:	

71	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

We	can	also	use	the	“Solve	Linear	Equations.vi”:	

	

Example:	

Given	the	following	model:	

𝑦 𝑢 = 𝑎𝑢 + 𝑏	

The	following	values	are	found	from	experiments:	

𝑦 1 = 0.8	

𝑦 2 = 3.0	

𝑦 3 = 4.0	

We	will	find	the	unknowns	 𝑎	 and	 𝑏	 using	the	Least	Square	(LS)	method	in	
MathScript/LabVIEW.	

	

We	have	that:	

𝑌 = Φ𝜃	

Where	

𝜃	 is	the	unknown	parameter	vector	

𝑌	 is	the	known	measurement	vector	

72	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

Φ	 is	the	known	regression	matrix	

The	solution	for	 𝜃	 may	be	found	as	(if	 Φ	 is	a	quadratic	matrix):	

𝜃 = Φ>7𝑌	

	

It	can	be	found	that	the	least	square	solution	for	 𝑌 = Φ𝜃	 is:	

𝜃st = (ΦuΦ)>7ΦuY 	

We	get:	

0.8 = 𝑎 ∙ 1 + 𝑏	

3.0 = 𝑎 ∙ 2 + 𝑏	

4.0 = 𝑎 ∙ 3 + 𝑏	

This	becomes:	

0.8
3.0
4.0
z

=
1 1
2 1
3 1
{

𝑎
𝑏
|

	

MathScript:	

We	define	 𝑌	 and	 Φ	 in	MathScript	and	find	 𝜃	 by:	

phi = [1 1; 2 1; 3 1];
Y = [0.8 3.0 4.0]';

theta = inv(phi'*phi)* phi'*Y

%or simply by
theta=phi\Y

The	answer	becomes:	

theta = 1.6

 -0.6

i.e.:	

𝑎 = 1.6	

𝑏 = −0.6	

This	gives:	

73	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

𝑦 𝑢 = 1.6𝑢 − 0.6	

LabVIEW:	

Block	Diagram:	

	

Front	Panel:	

	

We	can	also	use	the	“Solve	Linear	Equations.vi”	directly:	

	

[End	of	Example]	

10.2 System	Identification	using	Sub-space	
methods/Black-Box	methods	

Sub-space	methods/Black-Box	methods	is	used	to	find	a	model	with	non-physical	
parameters.	

A	sub-space	methods/Black-Box	method	estimates	a	linear	discrete	State-space	model	on	
the	form:	

𝑥JK7 = 𝐴𝑥J + 𝐵𝑢J	

𝑦J = 𝐶𝑥J + 𝐷𝑢J	

74	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

LabVIEW	offers	functionality	for	this.	In	the	“Parametric	Model	Estimation”	palette	we	find	
the	“SI	Estimate	State-Space	Model.vi”	which	can	be	used	for	sub-space	identification.	

“Parametric	Model	Estimation”	palette:	

	

	 	

This	VI	estimates	the	parameters	of	a	state-space	model	for	an	unknown	system.	

	

10.3 System	Identification	using	Polynomial	
Model	Estimation:	ARX/ARMAX	model	
Estimation	

LabVIEW	offers	VIs	for	ARX/ARMAX	model	estimation	in	the	“Parametric	Model	Estimation”	
palette.	

75	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

For	ARX	models	we	can	use	“SI	Estimate	ARX	model”:	

	 	

For	ARMAX	models	we	can	use	“SI	Estimate	ARMAX	model”:	

	 	

	

10.4 Generate	model	Data	
In	order	to	find	a	model	we	need	to	generate	data	based	on	the	real	process.	The	stimulus	
(exitation)	signal	and	the	response	signal	will	then	be	input	to	the	functions/VIs	(algorithms)	
in	LabVIEW	that	you	will	use	to	model	your	process.	

Below	we	explain	how	we	do	this	in	LabVIEW.	

Datalogging:	

76	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

Use	LabVIEW	for	exciting	the	process	and	logging	signals.	Use	open-loop	experiments	(no	
feedback	control	system).	You	can	use	the	Write	to	Measurement	File	function	on	the	File	
I/O	palette	in	LabVIEW	for	writing	data	to	text	files	(use	the	LVM	data	file	format,	not	the	
TDMS	file	format	which	give	binary	files).	

In	the	File	I/O	palette	in	LabVIEW	we	have	lots	of	functionality	for	writing	and	reading	files.	

Below	we	see	the	“File	I/O”	palette	in	LabVIEW:	

	

In	this	Tutorial	we	will	focus	on	the	“Write	To	Measurement	File”	and	“Read	From	
Measurement	File”.	

	 	

The	“Write	To	Measurement	File”	and	“Read	From	Measurement	File”	is	so-called	“Express	
VIs”.	When	you	drag	these	VI’s	to	the	Block	Diagram,	a	configuration	dialog	pops-up	
immediately,	like	this:	

77	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

In	this	configuration	dialog	you	set	file	name,	file	type,	etc.	

Note	that	these	“Express	VIs”	have	no	Block	Diagram.	

10.4.1 Excitation	signals	

It	is	important	to	have	a	good	excitation	signal,	you	can	use	different	excitation	signals,	such	
as:	

• A	PRBS	signal	(Pseudo	Random	Binary	Signal)	 	
• A	Chirp	Signal	
• A	Up-down	signal	

LabVIEW:	

In	LabVIEW	you	can	use	some	of	the	functions	in	the	Signal	Generation	palette:	

78	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

LabVIEW	Functions	Palette:	Signal	Processing	→	Signal	Generation	

	

PRBS	Signal	
A	PRBS	signal	looks	like	this:	
	

	
	

LabVIEW:	

In	LabVIEW	you	can	use	the	“SI	Generate	Pseudo-Random	Binary	Sequence.vi”	function.	

LabVIEW	Functions	Palette:	Control	Design	&	Simulation	→	System	identification	→	Utilities	
→	SI	Generate	Pseudo-Random	Binary	Sequence.vi	

	

79	 	 System	Identification	in	LabVIEW	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

	

Chirp	Signal	
A	Chirp	signal	looks	like	this:	
	

	
	

LabVIEW:	

In	LabVIEW	you	can	use	the	“Chirp	Pattern.vi”	function.	

LabVIEW	Functions	Palette:	Signal	Processing	→	Signal	Generation	→	Chirp	Pattern.vi	

	

	

	

	

80	

11 Overview	of	System	Identification	
functions	

In	LabVIEW	we	can	use	the	System	Identification	Toolkit.	

	

The	“System	Identification”	palette	in	LabVIEW:	

	

→	Use	the	System	Identification	VIs	to	create	and	estimate	mathematical	models	of	dynamic	
systems.	You	can	use	the	VIs	to	estimate	accurate	models	of	systems	based	on	observed	
input-output	data.	

The	“System	Identification”	palette	in	LabVIEW	has	the	following	subpalettes:	

Icon	 Name	 Description	

Preprocessin
g	

Data	Preprocessing	

	

Use	the	Data	Preprocessing	VIs	to	
preprocess	the	raw	data	that	you	acquired	
from	an	unknown	system.	

81	 	 Overview	of	System	Identification	functions	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

Parametric	

Parametric	Model	Estimation	

	

Use	the	Parametric	Model	Estimation	VIs	to	
estimate	a	parametric	mathematical	model	
for	an	unknown,	linear,	time-invariant	
system.	

Frequency	

Frequency-Domain	Model	
Estimation	

	

Use	the	Frequency-Domain	Model	
Estimation	VIs	to	estimate	the	frequency	
response	function	(FRF)	and	to	identify	a	
transfer	function	(TF)	or	a	state-space	(SS)	
model	of	an	unknown	system.	

Grey-
Box	

Partially	Known	Model	
Estimation	

	

Use	the	Partially	Known	Model	Estimation	
VIs	to	create	and	estimate	partially	known	
models	for	the	plant	in	a	system.	

Recursive	

Recursive	Model	Estimation	

	

Use	the	Recursive	Model	Estimation	VIs	to	
recursively	estimate	the	parametric	
mathematical	model	for	an	unknown	
system.	

Nonparamet
ric	

Nonparametric	Model	
Estimation	

	

Use	the	Nonparametric	Model	Estimation	
VIs	to	estimate	the	impulse	response	or	
frequency	response	of	an	unknown,	linear,	
time-invariant	system	from	an	input	and	
corresponding	output	signal.	

Validation	

Model	Validation	

	

Use	the	Model	Validation	VIs	to	analyze	and	
validate	a	system	model.	

Analysis	

Model	Analysis	

	

Use	the	Model	Analysis	VIs	to	perform	a	
Bode,	Nyquist,	or	pole-zero	analysis	of	a	
system	model	and	to	compute	the	standard	
deviation	of	the	results.	

Conversion	

Model	Conversion	

	

Use	the	Model	Conversion	VIs	to	convert	
models	created	in	the	LabVIEW	System	
Identification	Toolkit	into	models	you	can	
use	with	the	LabVIEW	Control	Design	and	
Simulation	Module.	You	can	convert	an	AR,	
ARX,	ARMAX,	output-error,	Box-Jenkins,	
general-linear,	or	state-space	model	into	a	
transfer	function,	zero-pole-gain,	or	state-
space	model.	You	also	can	convert	a	

82	 	 Overview	of	System	Identification	functions	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

continuous	model	to	a	discrete	model	or	
convert	a	discrete	model	to	a	continuous	
model.	

Managemen
t	

Model	Management	

	

Use	the	Model	Management	VIs	to	access	
information	about	the	system	model.	
Model	information	includes	properties	such	
as	the	system	type,	sampling	rate,	system	
dimensions,	noise	covariance,	and	so	on.	

Utilities	

Utilities	

	

Use	the	Utilities	VIs	to	perform	
miscellaneous	tasks	on	data	or	the	system	
model,	including	producing	data	samples,	
displaying	model	equations,	merging	
models,	and	so	on.	

	

	

	

The	“Data	Preprocessing”	palette	in	LabVIEW:	

	

Some	important	functions	in	the	“Data	Preprocessing”	palette	are:	

	

	

83	 	 Overview	of	System	Identification	functions	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

The	“Parametric	Model	Estimation”	palette	in	LabVIEW:	

	

Some	important	functions	in	the	“Parametric	Model	Estimation”	palette	are:	

	

	

	

	

	

The	“Parametric	Model	Estimation”	palette	in	LabVIEW	has	subpalette	for	“Polynomial	
Model	Estimation”:	 	

84	 	 Overview	of	System	Identification	functions	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

→	Use	the	Polynomial	Model	Estimation	VIs	to	estimate	an	AR,	ARX,ARMAX,	Box-Jenkins,	or	
output-error	model	for	an	unknown,	linear,	time-invariant	system.	

Some	important	functions	in	the	“Polynomial	Model	Estimation”	palette	are:	

	

	

	

	

	

	

85	

12 System	Identification	Example	
We	want	to	identify	the	model	of	a	given	system.	 	

We	have	found	the	model	to	be:	

𝑥 = −
1
𝑇
𝑥 + 𝐾𝑢(𝑡 − 𝜏)	

where	

𝑇	 is	the	time	constant	

𝐾	 is	the	system	gain,	e.g.	pump	gain	

𝜏	 is	the	time-delay	

→	We	want	to	find	the	model	parameters	 𝑇, 𝐾, 𝜏	 using	the	Least	Square	method.	We	will	
use	LabVIEW	and	MathScript.	

	

	 Set	the	system	on	the	form	 𝒚 = 𝛗𝜽	

Solutions:	

We	get:	

𝑥
�
= 𝑥 𝑢(𝑡 − 𝜏)

�

−
1
𝑇
𝐾
|

	

i.e.	

𝜃 = −
1
𝑇
𝐾

	

In	order	to	find	 𝜃	 using	the	Least	Square	method	we	need	to	log	input	and	output	data.	
This	means	we	need	to	discretize	the	system.	

We	use	a	simple	Euler	forward	method:	

𝑥 ≈
𝑥JK7 − 𝑥J

𝑇@
	

𝑇@	 is	the	sampling	time.	

86	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

This	gives:	

𝑥JK7 − 𝑥J
𝑇@
�

= 𝑥J 𝑢J> ?
�̀

�

−
1
𝑇
𝐾
|

	

Let’s	assume	 𝜏 = 3𝑠	 (which	can	be	found	from	a	simple	step	response	on	the	real	system),	
we	then	get	(with	sampling	time	 𝑇@ = 0.1):	

𝑥JK7 − 𝑥J
𝑇@
�

= 𝑥J 𝑢J>�6
�

−
1
𝑇
𝐾
|

	

Note!	In	3	seconds	we	log	30	points	with	data	using	sampling	time	 𝑻𝒔 = 𝟎. 𝟏!!!	

	

	 Given	the	following	logging	data	(the	data	is	just	for	illustration	and	not	realistic):	

𝒌	 𝒖	 𝒚	

1	 0.9	 3	

2	 1.0	 4	

3	 1.1	 5	

4	 1.2	 6	

5	 1.3	 7	

6	 1.4	 8	

7	 1.5	 9	

We	use	the	following	sampling	time:	 𝑻𝒔 = 𝟏𝒔	

From	a	simple	step	response,	we	have	found	the	time-delay	to	be:	 𝜏 = 3𝑠.	

→	Set	the	system	on	the	form	 𝒀 = 𝚽𝛉	

Solutions:	

With	time-delay	 𝜏 = 3𝑠	and	 𝑇@ = 1𝑠	 we	get:	

87	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

𝑥JK7 − 𝑥J
𝑇@
�

= 𝑥J 𝑢J>�
�

−
1
𝑇
𝐾
|

	

Using	the	given	data	set	we	can	set	on	the	form	 𝑌 = Φθ:	

7 − 6
8 − 7
9 − 8

=
6 0.9
7 1.0
8 1.1

−
1
𝑇
𝐾

	

i.e.:	

1
1
1
z

=
6 0.9
7 1.0
8 1.1

{

−
1
𝑇
𝐾
|

	

Note!	We	need	to	make	sure	the	dimensions	are	correct.	 	

	

→	We	find	the	model	parameters	(𝛉)	using	MathScript	

MathScript	gives:	

clear, clc

Y = [1, 1, 1]';
phi = [6, 0.9; 7, 1.0; 8, 1.1];

theta = phi\Y

%or
theta = inv(phi'*phi)*phi'*Y

T = -1/theta(1)
K = theta(2)

MathScript	responds	with	the	following	answers:	

theta =

 -0.3333

 3.3333

T =

 3

K =

 3.3333

88	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

i.e.,	the	model	parameters	become:	

𝑇 = 3, 𝐾 =
10
3
, 𝜏 = 3	

	

Which	gives	the	following	modell:	

𝑥 = −
1
𝑇
𝑥 + 𝐾𝑢(𝑡 − 𝜏)	

With	values:	

𝑥 = −
1
3
𝑥 +

10
3
(𝑡 − 3)	

	

	 Implement	the	model	in	LabVIEW.	Use	 𝑻 = 𝟓,	 𝑲 = 𝟐,	 𝝉 = 𝟑	 and	
simulate	the	system.	Plot	the	step	response	for	the	system.	

Model:	

𝑥 = −
1
𝑇
𝑥 + 𝐾𝑢(𝑡 − 𝜏)	

Where	 𝑇 = 5,	 𝐾 = 2,	 𝜏 = 3	

Solutions:	

We	implement	the	model	using	a	“Simulation	Subsystem”	and	use	the	available	blocks	in	the	
Control	and	Design	Module.	

The	model	may	be	implemented	as	follows:	

	

89	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

We	simulate	the	system	using	the	following	program:	

Block	Diagram:	

	

	

Front	Panel:	

We	do	a	simple	step	response:	

90	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

	 Find	the	transfer	function	for	the	system:	

𝐻 𝑠 =
𝑥(𝑠)
𝑢(𝑠)

	

Model:	

𝑥 = −
1
𝑇
𝑥 + 𝐾𝑢(𝑡 − 𝜏)	

Plot	the	step	response	for	the	transfer	function	in	MathScript.	Compare	and	discuss	the	
results	from	previous	task.	

Solutions:	

We	use	the	differential	equation:	

𝑥 = −
1
𝑇
𝑥 + 𝐾𝑢(𝑡 − 𝜏)	

Laplace	transformation	gives:	

91	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

𝑠𝑥(𝑠) = −
1
𝑇
𝑥(𝑠) + 𝐾𝑢(𝑠)𝑒>?@	

Note!	We	use	the	following	Laplace	transformation:	

𝐹 𝑠 𝑒>?@ ⟺ 𝑓(𝑡 − 𝜏) 	

𝑠𝐹(𝑠) 	⟺ 𝑓(𝑡) 	

Then	we	get:	

𝑠𝑥 𝑠 +
1
𝑇
𝑥 𝑠 = 𝐾𝑢(𝑠)𝑒>?@	

and:	

𝑥 𝑠 𝑠 +
1
𝑇

= 𝐾𝑢(𝑠)𝑒>?@	

and:	

𝑥 𝑠
𝑢(𝑠)

=
𝐾

𝑠 + 1
𝑇
𝑒>?@	

Finally:	

𝐻 𝑠 =
𝑥 𝑠
𝑢(𝑠)

=
𝐾𝑇

𝑇𝑠 + 1
𝑒>?@ =

𝐾���
𝑇𝑠 + 1

𝑒>?@	

With	values	(𝑇 = 5,	 𝐾 = 2,	 𝜏 = 3):	

𝐻 𝑠 =
𝑥 𝑠
𝑢(𝑠)

=
10

5𝑠 + 1
𝑒>�@	

MathScript:	

We	implement	the	transfer	function	in	MathScript	and	perform	a	step	response.	We	use	the	
step()	function.	

clear, clc

s=tf('s');
K=2;
T=5;

H1=tf(K*T/(T*s+1));

delay=3;
H2=set(H1,'inputdelay',delay);
step(H2)

92	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

% You may also use:
figure(2)
H = sys_order1(K*T, T, delay)
step(H)

The	step	response	becomes:	

	

→	We	see	that	the	step	response	is	the	same	as	in	the	previous	task.	

	 	 Log	input	and	output	data	based	on	the	model.	 	

Model:	

𝑥 = −
1
𝑇
𝑥 + 𝐾𝑢(𝑡 − 𝜏)	

Where	 𝑇 = 5,	 𝐾 = 2,	 𝜏 = 3	

Solutions:	

We	save	the	data	using	“Write	To	Measurement	File”	in	LabVIEW.	

Based	on	a	simple	step	response	we	can	find	the	time-delay	 𝜏.	

We	use	the	same	application	as	in	a	previous	task:	

93	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

	

	 Find	the	model	parameters	 	 (𝑻	 og	 𝑲)	using	Least	Square	in	LabVIEW	based	on	the	
logged	data.	 	

Note!	The	answers	should	be	 𝑇 ≈ 5	 and	 𝐾 ≈ 2.	

Model:	

𝑥 = −
1
𝑇
𝑥 + 𝐾𝑢(𝑡 − 𝜏)	

Where	 𝑇 = 5,	 𝐾 = 2,	 𝜏 = 3	

Solutions:	

It	is	a	good	idea	to	split	your	program	into	different	logical	parts	using,	e.g.,	SubVIs	in	
LabVIEW.	

	

The	different	parts/steps	could,	e.g.,	be:	

1. Get	Logged	Data	from	File	
a. Input:	File	Name	
b. Outputs:	 𝑢	 and	 𝑦	 (𝑇���)	

2. Transform	the	data	and	stack	data	into	 𝑌	 and	 Φ	

94	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

a. Inputs:	 𝑢	 and	 𝑦	 (𝑇���)	
b. Outputs:	 𝑌	 and	 Φ	

3. Find	the	Least	Square	solution	 𝜃st = (ΦuΦ)>7ΦuY	
a. Input:	 𝑌	 and	 Φ	
b. Output:	 𝜃	(𝜃�, 𝐾�)	

	

LabVIEW	code:	

Block	Diagram:	

	

Front	Panel:	

95	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

	

→	As	you	see	the	result	is	 𝑇 = 5	 and	 𝐾 = 2	 (as	expected).	

	

The	different	SubVI’s	do	the	following:	

1.	“Open	Measurement	Data	from	File.vi”	

This	SubVI	opens	the	logged	data	from	file	(created	in	a	previous	task).	

Block	Diagram:	

	

96	 	 System	Identification	Example	 	

Tutorial:	System	Identification	and	Estimation	in	LabVIEW	

2.	“Create	LS	Matrices	from	Logged	Data	with	Time	Delay.vi”	

This	SubVI	“stack”	data	on	the	form:	

𝑥JK7 − 𝑥J
𝑇@
�

= 𝑥J 𝑢J> ?
�̀

�

−
1
𝑇
𝐾
|

	

Block	Diagram:	

	

	

3.	“Find	LS	Solution.vi”	

This	SubVI	find	the	LS	solution:	

𝜃st = (ΦuΦ)>7ΦuY	

Block	Diagram:	

	

	

	

	

System	Identification	and	Estimation	in	LabVIEW	
	

Hans-Petter	Halvorsen	

Copyright	©	2017	

	

E-Mail:	hans.p.halvorsen@usn.no	 	

Web:	https://www.halvorsen.blog	 	

	

https://www.halvorsen.blog	

	

